Skip to main content
Log in

Optical Properties and Radiation Stability of Al2O3 Microparticles, Nanoparticles and Microspheres

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

A comparative analysis of the diffuse reflectance spectra in the range from 200 to 2500 nm is carried out on aluminum-oxide microspheres, microparticles and nanoparticles exposed to irradiation with protons and electrons with energies of 100 keV. It is established that the amount of intrinsic absorption centers in the microspheres is higher compared to microparticles and nanoparticles, while the concentration of induced absorption centers is lower.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. V. V. Neshchimenko, C. Li, M. M. Mikhailov, and J. Lv, Nanoscale 47 (10), 22335 (2018). https://doi.org/10.1039/C8NR04455D

    Article  Google Scholar 

  2. V. V. Neshchimenko, C. Li, and M. M. Mikhailov, Dyes Pigm. 145, 354 (2017). https://doi.org/10.1007/s11182-018-1566-4

    Article  CAS  Google Scholar 

  3. M. M. Mikhailov, V. V. Neshchimenko, A. N. Sokolovskiy, and V. Yu. Yurina, Prog. Org. Coat. 131, 340 (2019). https://doi.org/10.1016/j.porgcoat.2019.03.001

    Article  CAS  Google Scholar 

  4. V. I. Iurina, V. V. Neshchimenko, M. M. Mikhailov, and C. Li, AIP Conf. Proc., 2051, 020108 (2018). https://doi.org/10.1063/1.5083351

    Article  CAS  Google Scholar 

  5. K. A. Anikin, A. M. Borisov, A. V. Zheltukhin, A. A. Zhukov, S. V. Savushkina, I. D. Fedichkin, V. N. Chernik, and A. V. Apelfeld, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 12 (3), 531 (2018). https://doi.org/10.1134/S1027451018030229

    Article  CAS  Google Scholar 

  6. I. P. Batra, J. Phys. C: Solid State Phys. 15, 5399 (1982).

    Article  CAS  Google Scholar 

  7. S. D. Mo, Y. N. Xu, and W. Y. Ching, J. Am. Ceram. Soc. 80, 1193 (1997).

    Article  CAS  Google Scholar 

  8. J. W. Anthony, R. A. Bideaux, K. W. Bladh, and M. C. Nichols, Handbook of Mineralogy (Mineral Data Publishing, Tucson, AZ, 1997), Vol. III, p. 628.

    Google Scholar 

  9. A. I. Surdo, V. A. Pustovarov, V. S. Kortov, A. S. Kishka, and E. I. Zinin, Nucl. Instrum. Methods Phys. Res., Sect. A 543, 234 (2005). https://doi.org/10.1016/j.nima.2005.01.189

    Article  CAS  Google Scholar 

  10. A. V. Pujats, M. J. Springis, and J. A. Valbis, Phys. Status Solidi A 62 (1), 85 (1980). https://doi.org/10.1002/pssa.2210620162

    Article  Google Scholar 

  11. H. Zirour, M. Izerrouken, and A. Sari, Nucl. Instrum. Methods Phys. Res., Sect. B 365, 269 (2015). https://doi.org/10.1016/j.nimb.2015.07.067

    Article  CAS  Google Scholar 

  12. I. Tale, T. M. Piters, M. Barbosa-Flores, R. Perez-Salas, and M. Springis, Radiat. Prot. Dosim. 65, 235 (1996).

    Article  CAS  Google Scholar 

  13. N. Kristianpoller, A. Rehavi, A. Shmilevich, D. Weiss, and R. Chen, Nucl. Instrum. Methods Phys. Res., Sect. B 141, 343 (1998).

    CAS  Google Scholar 

  14. A. I. Kostyukov, A. V. Zhuzhgov, V. V. Kaichev, A. A. Rastorguev, V. N. Snytnikov, and V. N. Snytnikov, Opt. Mater. 75, 757 (2018). https://doi.org/10.1016/j.optmat.2017.11.040

    Article  CAS  Google Scholar 

  15. A. I. Popov, A. Lushchik, E. Shablonin, E. Vasil’chenko, E. A. Kotomin, A. M. Moskina, and V. N. Kuzovkov, Nucl. Instrum. Methods Phys. Res., Sect. B 433, 93 (2018). https://doi.org/10.1016/j.nimb.2018.07.036

    Article  CAS  Google Scholar 

  16. P. Levy, Phys. Rev. 123 (4), 1226 (1961).

    Article  CAS  Google Scholar 

  17. G. W. Arnold and W. D. Compton, Phys. Rev. Lett. 4, 66 (1960).

    Article  CAS  Google Scholar 

  18. E. A. Kotomin and A. I. Popov, Nucl. Instrum. Methods Phys. Res., Sect. B 141, 1 (1998).

    CAS  Google Scholar 

  19. N. Kristianpoller, A. Rehavi, A. Shmilevich, D. Weiss, and R. Chen, Nucl. Instrum. Methods Phys. Res., Sect. B 141, 343 (1998).

    CAS  Google Scholar 

  20. K. H. Lee and J. H. Crawford, Phys. Rev. B: Condens. Matter. Mater Phys. 19, 3217 (1979).

    Article  CAS  Google Scholar 

  21. E. D. Aluker, V. V. Gavrilov, and S. A. Chernov, Phys. Status Solidi B 171 (1), 283 (1992).

    Article  CAS  Google Scholar 

  22. B. D. Evans, G. J. Pogatshnik, and Y. Chen, Nucl. Instrum. Methods Phys. Res., Sect. B 91, 258 (1994).

    CAS  Google Scholar 

  23. J. Gangwar, B. K. Gupta, S. K. Tripathi, and A. K. Srivastava, Nanoscale 7 (32), 13313 (2015). https://doi.org/10.1039/c5nr02369f

    Article  CAS  Google Scholar 

  24. V. A. Pustovarov, T. V. Perevalov, V. A. Gritsenko, T. P. Smirnova, and A. P. Yelisseyev, Thin Solid Films 519, 6319 (2011). https://doi.org/10.1016/j.tsf.2011.04.014

    Article  CAS  Google Scholar 

  25. L. Wang, L. D. Zhang, J. H. Wang, Y. J. Feng, K. M. Feng, J. J. Yang, and N. Liu, Nucl. Instrum. Methods Phys. Res., Sect. B 406, 600 (2017). https://doi.org/10.1016/j.nimb.2017.02.073

    Article  CAS  Google Scholar 

  26. T. Watcharatharapong, J. T-Thienprasert, and S. Limpijumnong, Integr. Ferroelectr. 156 (1), 79 (2014). https://doi.org/10.1080/10584587.2014.906290

    Article  CAS  Google Scholar 

  27. K. J. Caulfield, R. Cooper, and J. F. Boas, Phys. Rev. 47, 55 (1993).

    Article  CAS  Google Scholar 

  28. T. V. Perevalov, O. E. Tereshenko, V. A. Gritsenko, V. A. Pustovarov, A. P. Yelisseyev, C. Park, and C. Lee, J. Appl. Phys. 108 (1), 1350 (2010). https://doi.org/10.1063/1.3455843

    Article  CAS  Google Scholar 

  29. V. A. Pustovarov, V. S. Aliev, T. V. Perevalov, V. A. Gritsenko, and A. P. Eliseev, J. Exp. Theor. Phys. 111 (6), 989 (2010). https://doi.org/10.1134/s1063776110120113

    Article  CAS  Google Scholar 

  30. A. Stashans, E. Kotomin, and J. -L. Calais, Phys. Rev. B: Condens. Matter. Mater Phys. 49 (21), 14854 (1994). https://doi.org/10.1103/physrevb.49.14854

    Article  CAS  Google Scholar 

  31. P. M. Arnal, M. Comotti, and F. Schüth, Angew. Chem., Int. Ed. Engl. 45, 8224 (2006).

    Article  CAS  Google Scholar 

  32. Y. W. Wang and W. J. Tseng, J. Am. Ceram. Soc. 92, 32 (2012).

    Article  Google Scholar 

  33. M. A. Serebryakova, A. V. Zaikovskii, S. Z. Sakhapov, D. V. Smovzh, G. I. Sukhinin, and S. A. Novopashin, Int. J. Heat Mass Transfer 108, 1314 (2016). https://doi.org/10.1016/j.ijheatmasstransfer.2016.12.098

    Article  CAS  Google Scholar 

  34. V. V. Abraimov, A. A. Negoda, A. P. Zavalishin, and L. K. Kolybaev, Kosm. Nauka Tekhnol. 1 (2), 76 (1995).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. Yu. Yurina or V. V. Neshchimenko.

Additional information

Translated by O. Maslova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yurina, V.Y., Neshchimenko, V.V. & Chundong, L. Optical Properties and Radiation Stability of Al2O3 Microparticles, Nanoparticles and Microspheres. J. Surf. Investig. 14, 253–259 (2020). https://doi.org/10.1134/S102745102002038X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102745102002038X

Keywords:

Navigation