Skip to main content
Log in

Blistering in Helium-Ion-Irradiated Zirconium, Aluminum, and Chromium Nitride Films

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

This work is devoted to studying blistering in ZrN, AlN, and CrN films formed by reactive magnetron sputtering. The surface morphology and cross-sectional microstructure of mononitride films after irradiation with He ions (energy 40 keV and doses of 3 × 1017−1.1 × 1018 cm–2) at room temperature are analyzed by scanning, atomic force, and transmission electron microscopy. The critical doses of blistering are determined for ZrN (6 × 1017 cm–2), AlN (5 × 1017 cm–2), and CrN (6 × 1017 cm–2) films. The high density of blisters in ZrN films leads to the merging of neighboring blisters (average size 0.75 μm) and the formation of large blisters (average size 1.35 μm). The blisters in the AlN films have a regular round shape (average size 1.7 μm). The СrN films are characterized by the presence of open blisters having a two-level structure: an upper blister with a diameter of 2−10 μm and a lower one with a diameter of 1.2 μm. As follows from the TEM results, 40‑keV He-ion irradiation of the films and their subsequent vacuum annealing leads to the formation of chains of radiation-induced pores filled with helium in the region of the projective ion range Rp. The formation of extended cracks is found to occur in the Rp region of ZrN, which is caused by interbubble fracturing due to high excess pressure in pores located at a depth close to Rp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. S. J. Zinkle and G. S. Was, Acta Mater. 61, 735 (2013).

    Article  CAS  Google Scholar 

  2. V. V. Uglov, G. Abadias, and S. V. Zlotski, J. Surf. Invest.: X-Ray, Synchrotron. Neutron Tech. 9 (5), 995 (2015).

    Article  CAS  Google Scholar 

  3. A. Janse van Vuuren, J. H. Neethling, and V. A. Skuratov, Nucl. Instrum. Methods Phys. Res., Sect. B 326, 19 (2014).

    CAS  Google Scholar 

  4. S. Agarwal, P. Trocellier, and Y. Serruys, Nucl. Instrum. Methods Phys. Res., Sect. B 327, 117 (2014).

    CAS  Google Scholar 

  5. S. J. Zinkle, Nucl. Instrum. Methods Phys. Res., Sect. B 286, 4 (2012).

    CAS  Google Scholar 

  6. V. V. Uglov, Radiation Processes and Phenomena in Solids (Vysheishaya shkola, Minsk, 2011), p. 207 [in Russian].

  7. V. V. Uglov, Radiation Processes and Phenomena in Solids (Vysheishaya shkola, Minsk, 2011), p. 188 [in Russian].

  8. Z. J. Liu, N. Jiang, Y. G. Shen, and X. N. Li, Thin Solid Films 516, 7609 (2008).

    Article  CAS  Google Scholar 

  9. M. Y. He and A. G. Evans, Mater. Sci. Eng. 245, 168 (1998).

    Article  Google Scholar 

  10. J. H. Evans, J. Nucl. Mater. 76–77, 228 (1978).

    Article  Google Scholar 

  11. E. P. EerNiss and S. T. Picraux, J. Appl. Phys. 48 (1), 9 (1977).

  12. W. G. Wolfer, J. Nucl. Mater. 93–94, 713 (1980).

    Article  Google Scholar 

  13. J. H. Evans, J. Nucl. Mater. 68, 129 (1977).

    Article  CAS  Google Scholar 

  14. G. Abadias, V. V. Uglov, I. A. Saladukhin, S. V. Zlotski, et al., Surf. Coat. Technol. 308, 158 (2016).

    Article  CAS  Google Scholar 

  15. T. A. Kuznetsova, V. A. Lapitskaya, S. A. Chizhik, V. V. Uglov, et al., IOP Conf. Ser.: Mater. Sci. Eng. 443 (012018), 5 (2018).

  16. W. Siriprom, C. Chananonnawathorn, S. Kongsriprapan, K. Teanchai, et al., Mater. Today: Proc. 5, 15224 (2018).

    CAS  Google Scholar 

  17. A. S. Kuznetsov, M. A. Gleeson, and F. Bijkerk, J. Phys.: Condens. Matter 24, 052203 (2012).

    CAS  Google Scholar 

  18. E. G. Grigor’ev, Yu. A. Perlovich, G. I. Solov’ev, A. L. Udovskii, and V. L. Yakushin, Physical Materials Science, Vol. 4: Physical Principles of Strength. Radiation Physics of the Solid State. Computer Simulation (Mosk. Inzh. Fiz. Inst., Moscow, 2008) [in Russian].

Download references

Funding

The work was supported by the Belorusian Foundation for Basic Research (project no. F18MS-027).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. V. Uglov or S. V. Zlotski.

Additional information

Translated by L. Chernikova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uglov, V.V., Abadias, G., Zlotski, S.V. et al. Blistering in Helium-Ion-Irradiated Zirconium, Aluminum, and Chromium Nitride Films. J. Surf. Investig. 14, 359–365 (2020). https://doi.org/10.1134/S1027451020020524

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451020020524

Keywords:

Navigation