Skip to main content
Log in

Some Features of the Electron Exchange between Ions and a Metal Surface Caused by its Atomic Structure

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

Some features of the electron exchange between ions and a metal surface caused by its atomic structure are studied. The simulation is based on three-dimensional implementation of the wave-packet propagation method using pseudopotentials describing the metal at the atomic level. Three-dimensional pseudopotentials for the Cu(100), Cu(110), and Cu(111) surfaces, which reproduce well-known electron-exchange regularities well, are constructed using density functional theory. When considering the model “static” problem, it is shown that the lateral position of an ion weakly affects the main characteristics of the electron exchange and ion propagation along one of the directions in the crystal. However, three-dimensional pseudopotentials taking the atomic structure of the metal into account make it possible to obtain a more realistic picture of the electron transition than widely used one-dimensional model pseudopotentials. For example, when simulating grazing scattering with the use of one-dimensional pseudopotentials, the electron retains the parallel velocity component after the passing to the metal, which is contrary to fact. If three-dimensional potentials are used, then the parallel component of the electron velocity in the metal decreases, which is more correct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. R. Brako and D. M. Newns, Rep. Prog. Phys. 52, 655 (1989).

    Article  CAS  Google Scholar 

  2. H. Shao, D. C. Langreth, and P. Nordlander, Low Energy Ion-Surface Interactions, Ed. by J. W. Rabalais (Wiley, New York, 1994).

    Google Scholar 

  3. T. Hecht, H. Winter, A. G. Borisov, J. P. Gauyacq, and A. K. Kazansky, Phys. Rev. Lett. 84, 2517 (2000).

    Article  CAS  Google Scholar 

  4. J. P. Gauyacq, A. G. Borisov, and D. Teillet-Billy, in Formation/Destruction of Negative Ions in Heavy Particle-Surface Collisions, Ed. by V. A. Esaulov (Cambridge Univ. Press, Cambridge, 1996).

    Google Scholar 

  5. J. J. C. Geerlings and J. Los, Phys. Rep. 190, 133 (1990).

    Article  Google Scholar 

  6. H. Chakraborty, T. Niederhausen, and U. Thumm, Phys. Rev. A 70, 052903 (2004).

    Article  Google Scholar 

  7. I. K. Gainullin, Phys.-Usp. (in press). https://doi.org/10.3367/UFNe.2019.11.038691

  8. I. K. Gainullin and I. F. Urazgildin, Bull. Russ. Acad. Sci.: Phys. 70, 1024 (2006).

    Google Scholar 

  9. I. K. Gainullin, E. Yu. Usman, and I. F. Urazgildin, Nucl. Instrum. Methods Phys. Res., Sect. B 232, 22 (2005). https://doi.org/10.1016/j.nimb.2005.03.019

    Article  CAS  Google Scholar 

  10. I. K. Gainullin, E. Yu. Usman, Y. W. Song, and I. F. Urazgil’din, Vacuum 72, 263 (2004). https://doi.org/10.1016/j.vacuum.2003.07.001

    Article  CAS  Google Scholar 

  11. I. K. Gainullin, K. K. Satarin, E. Yu. Usman, and I. F. Urazgildin, Poverkhn.: Rentgenovskie, Sinkhrotronnye Neitr. Issled., No. 1, 39 (2005).

  12. I. K. Gainullin and I. F. Urazgildin, Phys. Rev. B 74, 205403 (2006). https://doi.org/10.1103/PhysRevB.74.205403

    Article  CAS  Google Scholar 

  13. A. A. Magunov, D. K. Shestakov, I. K. Gainullin, and I. F. Urazgildin, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2, 764 (2008). https://doi.org/10.1134/S1027451008050170

    Article  Google Scholar 

  14. D. K. Shestakov, T. Yu. Polivnikova, I. K. Gainullin, and I. F. Urazgildin, Nucl. Instrum. Methods Phys. Res., Sect. B 267, 2596 (2009). https://doi.org/10.1016/j.nimb.2009.05.043

    Article  CAS  Google Scholar 

  15. E. Yu. Usman, I. K. Gainullin, and I. F. Urazgil’din, Vestn. Mosk. Univ., Ser. 3: Fiz. Astron. 2, 23 (2005).

    Google Scholar 

  16. E. R. Amanbaev, I. K. Gainullin, E. Yu. Zykova, and I. F. Urazgildin, Thin Solid Films 519, 4737 (2011). https://doi.org/10.1016/j.tsf.2011.01.026

    Article  CAS  Google Scholar 

  17. I. K. Gainullin and M. A. Sonkin, Math. Models Comput. Simul. 11, 964 (2019). https://doi.org/10.1134/S2070048219060048

    Article  Google Scholar 

  18. I. K. Gainullin, Moscow Univ. Phys. Bull. (Engl. Transl.) 74, 585 (2019). https://doi.org/10.3103/S0027134919060158

  19. I. K. Gainullin, Phys. Rev. A 100, 032712 (2019). https://doi.org/10.1103/PhysRevA.100.032712

    Article  CAS  Google Scholar 

  20. H. Winter, Phys. Rep. 367, 387 (2002).

    Article  CAS  Google Scholar 

  21. V. A. Ermoshin and A. K. Kazansky, Phys. Lett. A 218, 99 (1996).

    Article  CAS  Google Scholar 

  22. J. N. Bardsley, Case Stud. At. Phys 4, 299 (1974).

    CAS  Google Scholar 

  23. P. J. Jennings, R. O. Jones, and M. Weinert, Phys. Rev. B 37, 6113 (1988).

    Article  CAS  Google Scholar 

  24. E. V. Chulkov, V. M. Silkin, and P. M. Echenique, Surf. Sci. 437, 330 (1999).

    Article  CAS  Google Scholar 

  25. I. K. Gainullin and M. A. Sonkin, Comput. Phys. Commun. 188, 68 (2015). https://doi.org/10.1016/j.cpc.2014.11.005

    Article  CAS  Google Scholar 

  26. I. K. Gainullin, Comput. Phys. Commun. 210, 72 (2017). https://doi.org/10.1016/j.cpc.2016.09.021

    Article  CAS  Google Scholar 

  27. I. K. Gainullin, Phys. Rev. A 95, 052705 (2017). https://doi.org/10.1103/PhysRevA.95.052705

    Article  Google Scholar 

  28. I. K. Gainullin and M. A. Sonkin, Phys. Rev. A 92, 022710 (2015). https://doi.org/10.1103/PhysRevA.92.022710

    Article  CAS  Google Scholar 

  29. I. K. Gainullin, Surf. Sci. 677, 324 (2018). https://doi.org/10.1016/j.susc.2018.08.007

    Article  CAS  Google Scholar 

  30. I. K. Gainullin, Surf. Sci. 681, 158 (2019). https://doi.org/10.1016/j.susc.2018.11.003

    Article  CAS  Google Scholar 

  31. P. Hohenberg and W. Kohn, Phys. Rev. B 136, 864 (1964).

    Article  Google Scholar 

  32. W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965).

    Article  Google Scholar 

  33. J. M. Soler et al., J. Phys.: Condens. Matter 14, 2745 (2002).

    CAS  Google Scholar 

  34. G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).

    Article  CAS  Google Scholar 

  35. P. Giannozzi et al., J. Phys.: Condens. Matter 21, 395502 (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. K. Gainullin.

Additional information

Translated by L. Kulman

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleksandrov, A.F., Gainullin, I.K. & Sonkin, M.A. Some Features of the Electron Exchange between Ions and a Metal Surface Caused by its Atomic Structure. J. Surf. Investig. 14, 791–797 (2020). https://doi.org/10.1134/S1027451020040205

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451020040205

Keywords:

Navigation