Skip to main content
Log in

Study of Nanostructures in High-Chromium Oxide Dispersion-Strengthened Steels

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The structure of two high-chromium (~14–15 at % Cr) oxide dispersion-strengthened steels was characterized using atom-probe tomography and transmission electron microscopy. One of the steels was manufactured using the conventional technology for preparing oxide dispersion-strengthened steels, with mechanical alloying of the matrix steel and yttrium oxide Y2O3 powder. Another steel was produced by mechanically alloying an oxidized powder of matrix steel with the intermetallic compound Fe3Y. It was shown that the average size of oxide inclusions in the examined steels ranged from 5 to 6 nm, with a number density from 1 × 1022 to 4 × 1023 m–3. The average size of clusters varied from 2 to 3 nm, with a number density ranging from 1 × 1023 to 3.2 × 1023 m–3. These clusters were predominantly enriched in Y and O. Steel produced with the addition of Fe3Y exibited a high number density of clusters (~3 × 1023 m–3) and a lower number density of oxides (~1 × 1022 m–3) compared to steels manufactured conventionally. It was also demonstrated that the high chromium concentration in the materials increased its presence in the matrix, thereby enhancing the corrosion resistance of the steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. R. L. Klueh, J. P. Shingledecker, R. W. Swindeman, and D. T. Hoelzer, J. Nucl. Mater. 341, 103 (2005). https://www.doi.org/10.1016/j.jnucmat.2005.01.017

    Article  ADS  CAS  Google Scholar 

  2. J. H. Schneibel, C. T. Liu, M. K. Miller, M. J. Mills, P. Sarosi, and M. Heilmaier, Scr. Mater. 61, 793 (2009). https://www.doi.org/10.1016/j.scriptamat.2009.06.034

    Article  CAS  Google Scholar 

  3. G. R. Odette, Scr. Mater. 143, 142 (2018). https://www.doi.org/10.1016/j.scriptamat.2017.06.021

    Article  CAS  Google Scholar 

  4. S. Ukai and M. Fujiwara, J. Nucl. Mater. 307–311, 749 (2002). https://www.doi.org/10.1016/S0022-3115(02)01043-7

    Article  ADS  Google Scholar 

  5. R. Lindau, A. Möslang, M. Rieth, M. Klimiankou, E.Materna- Morris, A. Alamo, A.-A. F. Tavassoli, C. Cayron, A.-M. Lancha, P. Fernandez, N. Baluc, R. Schäublin, E. Diegele, G. Filacchioni, J. W. Rensman, B. v. d. Schaaf, E. Lucon, and W. Dietz, Fusion Eng. Des. 75–79, 989 (2005). https://www.doi.org/10.1016/j.fusengdes.2005.06.186

    Article  Google Scholar 

  6. J. Ribis, I. Mouton, C. Baumier, A. Gentils, Loyer-M. Prost, L. Lunéville, and D. Siméone, Nanomaterials 11, 2590 (2021). https://www.doi.org/10.3390/nano11102590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. N. Oono and S. Ukai, Mater. Trans. 59, 651 (2018). https://www.doi.org/10.2320/matertrans.M2018110

    Article  Google Scholar 

  8. M. Klimiankou, R. Lindau, and A. Möslang, J. Nucl. Mater. 329, 347 (2004). https://www.doi.org/10.1016/j.jnucmat.2004.04.083

    Article  ADS  Google Scholar 

  9. S. V. Rogozhkin, A. A. Bogachev, D. I. Kirillov, A. A. Nikitin, N. N. Orlov, A. A. Aleev, A. G. Zaluzhnyi, and M. A. Kozodaev, Phys. Met. Metallogr. 115, 1259 (2014). https://www.doi.org/10.1134/S0031918X14120060

    Article  ADS  Google Scholar 

  10. S. V. Rogozhkin, A. A. Aleev, A. G. Zaluzhnyi, A. A. Nikitin, N. A. Iskandarov, P. Vladimirov, R. Lindau, and A. Möslang, J. Nucl. Mater. 40, 99 (2011). https://www.doi.org/10.1016/j.jnucmat.2010.09.021

    Google Scholar 

  11. S. V. Rogozhkin, N. N. Orlov, A. A. Nikitin, A. A. Aleev, A. G. Zaluzhny, M. A. Kozodaev, R. Lindau, A. Möslang, and P. Vladimirov, Inorg. Mater.: Appl. Res. 6, 151 (2015). https://www.doi.org/10.1134/S2075113315020136

    Article  Google Scholar 

  12. S. V. Rogozhkin, A. A. Khomich, A. V. Klauz, A. A. Bogachev, Y. E. Gorshkova, G. D. Bokuchava, A. A. Nikitin, A. A. Lukyanchuk, O. A. Raznitsyn, A. S. Shutov, and A. G. Zaluzhny, J. Surf. Invest. X‑ray, Synchrotron Neutron Tech. 16, 1189 (2022). https://www.doi.org/10.1134/S1027451022060490

    Article  CAS  Google Scholar 

  13. M. A. Auger, V. de Castro, T. Leguey, J. Tarcísio-Costa, M. A. Monge, A. Muñoz, and R. Pareja, J. Nucl. Mater. 455, 600 (2014). https://www.doi.org/10.1016/j.jnucmat.2014.08.040

    Article  ADS  CAS  Google Scholar 

  14. Z. Oksiuta, M. Lewandowska, P. Unifantowicz, N. Baluc, and K. J. Kurzydlowski, Fusion Eng. Des. 86, 2417 (2011). https://www.doi.org/10.1016/j.fusengdes.2011.01.023

    Article  CAS  Google Scholar 

  15. S. V. Rogozhkin, A. A. Khomich, A. A. Bogachev, A. A. Nikitin, V. V. Khoroshilov, A. A. Lukyanchuk, O. A. Raznitsyn, A. S. Shutov, A. L. Vasiliev, and M. Yu. Presniakov, Phys. At. Nucl. 83, 1425 (2020). https://www.doi.org/10.1134/S1063778820100191

    Article  CAS  Google Scholar 

  16. S. V. Rogozhkin, A. A. Aleev, A. A. Lukyanchuk, A. S. Shutov, O. A. Raznitsyn, and S. E. Kirillov, Instr-um. Exp. Tech. 60, 428 (2017). https://www.doi.org/10.1134/S002044121702021X

    Article  Google Scholar 

  17. O. A. Raznitsyn, A. A. Lukyanchuk, A. S. Shutov, S. V. Rogozhkin, and A. A. Aleev, J. Anal. Chem. 72, 1404 (2017). https://www.doi.org/10.1134/S1061934817140118

    Article  CAS  Google Scholar 

  18. A. A. Aleev, S. V. Rogozhkin, A. A. Lukyanchuk, A. S. Shutov, O. A. Raznitsyn, A. A. Nikitin, N. A. Iskandarov, O. A. Korchuganova, and S. E. Kirillov Certificate of state registration of a computer program No. 2018661876 (2018).

  19. M. K. Miller and O. Ridge, Rev. Sci. Instrum. 78, 031101 (2007). https://www.doi.org/10.1063/1.2709758

    Article  ADS  PubMed  Google Scholar 

  20. S. V. Rogozhkin, A. A. Khomich, A. A. Bogachev, A. A. Nikitin, V. V. Khoroshilov, A. A. Lukyanchuk, O. A. Raznitsyn, A. S. Shutov, A. L. Vasiliev, and M. Yu. Presniakov, Phys. At. Nucl. 83, 1425 (2020). https://www.doi.org/10.1134/S1063778820100191

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to Dr. P. Vladimirov from the Karlsruhe Institute of Technology (Germany) and Prof. A. Kimura from Kyoto University (Japan) for providing samples of ODS steels. Atom-probe tomography measurements were performed using equipment of the KAMICS Center for Collective Use (http://kamiks.itep.ru/) of the National Research Centre “Kurchatov Institute.”

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation (agreement no. 075-15-2021-1352).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Rogozhkin.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by O. Zhukova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rogozhkin, S.V., Klauz, A.V., Bogachev, A.A. et al. Study of Nanostructures in High-Chromium Oxide Dispersion-Strengthened Steels. J. Surf. Investig. 17 (Suppl 1), S282–S288 (2023). https://doi.org/10.1134/S1027451023070431

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451023070431

Keywords:

Navigation