Skip to main content
Log in

Nonlinear refractive index measurements and self-action effects in Roselle-Hibiscus Sabdariffa solutions

  • Nonlinear and Quantum Optics
  • Published:
Laser Physics

Abstract

We report the observation of self-action phenomena, such as self-focusing, self-defocusing, self-phase modulation and beam fanning in Roselle-Hibiscus Sabdariffa solutions. This material is found to be a new type of natural nonlinear media, and the nonlinear reflective index coefficient has been determined using a Z-scan technique and by measuring the critical power for the self-trapping effect. Z-scan measurements show that this material has a large negative nonlinear refractive index, n 2 = 1 × 10−4 esu. A comparison between the experimental n 2 values and the calculated thermal value for n 2 suggests that the major contribution to nonlinear response is of thermal origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. N. Prasad and D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiely, New York, 1991).

    Google Scholar 

  2. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New Hork, 1984; Nauka, Moscow, 1989).

    MATH  Google Scholar 

  3. S. Brugioni and R. Meucci, Opt. Comm. 206, 445 (2002).

    Article  ADS  Google Scholar 

  4. F. Z. Henari, S. MacNamara, O. Stevenson, et al., Adv. Mater. 5, 930 (1993).

    Article  Google Scholar 

  5. J. C. Khoo, M. V. Wood, and B. D. Guenther, MRS Proc. 474, 229 (1997).

    Google Scholar 

  6. H. Abdeldayem, W. K. Witherow, A. Shields, et al., Opt. Lett. 19, 2068 (1994).

    ADS  Google Scholar 

  7. H. J. Zhang, J. H. Dai, P. Y. Wang, and L. A. Wu, Opt. Lett. 14, 695 (1989).

    ADS  Google Scholar 

  8. M. Sheik-Bahae, A. A. Said and E. W. Van Stryland, Opt. Lett. 14, 955 (1989).

    ADS  Google Scholar 

  9. M. Sheik-Bahae, A. A. Said, T. H. Wei, et al., IEEE. J. Quantum Electron. 26, 760 (1990).

    Article  ADS  Google Scholar 

  10. S. L. Gömeze, F. L. S. Cuppo, and A. M. Figueiredo Neto, Braz. J. Phys. 33, 813 (2003).

    Google Scholar 

  11. S. L. Gömeze, F. L. S. Cuppo, A. M. Figueiredo Neto, et al., Phys. Rev. E 59, 3059 (1999).

    Article  ADS  Google Scholar 

  12. S. D. Durbin, S. M. Arakelian, and Y. R. Shen, Opt. Lett. 6, 411 (1981).

    ADS  Google Scholar 

  13. A. A. Andrade, T. E. Teno’rio, T. Catunda, et al., J. Opt. Soc. Am. B 16, 395 (1999).

    ADS  Google Scholar 

  14. J. N. Hayes, Appl. Opt. 2, 455 (1972).

    Article  MathSciNet  ADS  Google Scholar 

  15. S. E. Bailkowski, Photothermal Spectroscopy Methods for Chemical Analysis (Wiely, New York, 1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Text © Astro, Ltd., 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henari, F.Z., Al-Saie, A. Nonlinear refractive index measurements and self-action effects in Roselle-Hibiscus Sabdariffa solutions. Laser Phys. 16, 1664–1667 (2006). https://doi.org/10.1134/S1054660X06120115

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X06120115

PACS numbers

Navigation