Skip to main content
Log in

A fiber amplifier and an ESFADOF: Developments for a transceiver in a Brillouin lidar

  • Quantum Optics, Laser Physics, and Spectroscopy
  • Published:
Laser Physics

Abstract

For the remote sensing of temperature profiles in the ocean, Brillouin scattering can be exploited as a temperature tracer. Such a lidar system is capable of delivering cost-effective on-line data from an extended region of the ocean compared to conventional in situ techniques. The acquired temperature profiles can give valuable input into climate studies and weather forecasts. In this contribution, we present the current status of our experimental setup, consisting of a light source based on a multistage pulsed Yb-doped fiber amplifier and a receiver unit based on an excited-state Faraday anomalous dispersion optical filter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Rothe, U. Brinkmann, and H. Walther, Appl. Phys. 3, 115 (1974).

    Article  ADS  Google Scholar 

  2. K. Rothe, U. Brinkmann, and H. Walther, Appl. Phys. 4, 181 (1974).

    Article  ADS  Google Scholar 

  3. A. Tönnißen, J. Wanner, K. Rothe, and H. Walther, Appl. Phys. 18, 297 (1979).

    Article  ADS  Google Scholar 

  4. J. Werner, K. Rothe, and H. Walther, Appl. Phys. B 32, 113 (1983).

    Article  ADS  Google Scholar 

  5. W. Steinbrecht, K. Rothe, and H. Walther, Appl. Opt. 28, 3616 (1989).

    ADS  Google Scholar 

  6. G. Hickman, J. Harding, M. Carnes, et al., Remote Sens. Environ. 36, 165 (1991).

    Article  Google Scholar 

  7. J. Guagliardo and Dufilho, Rev. Sci. Instrum. 51, 79 (1980).

    Article  ADS  Google Scholar 

  8. S. Henderson, E. Yuen, and E. Fry, Opt. Lett. 11, 715 (1986).

    ADS  Google Scholar 

  9. E. Fry, Q. Hu, and X. Li, Appl. Opt. 30, 1015 (1991).

    ADS  Google Scholar 

  10. E. Fry, Y. Emery, X. Quan, and J. Katz, Appl. Opt. 36, 6887 (1997).

    ADS  Google Scholar 

  11. Y. Emery and E. Fry, Proc. SPIE, Ocean Opt. XIII 2963, 210 (1996).

    Article  ADS  Google Scholar 

  12. E. Fry, J. Katz, R. Nicolaescu, and T. Walther, Proc. SPIE, Ocean Opt. XIV (1998).

  13. E. Fry, J. Katz, D. Liu, and T. Walther, J. Mod. Opt. 49, 411 (2002).

    Article  ADS  Google Scholar 

  14. R. Pope and E. Fry, Appl. Opt. 36, 8710 (1997).

    Article  ADS  Google Scholar 

  15. E. Fry, T. Walther, D. Liu, and J. Katz, in Ocean Optics XIV (ONR, 1998), No. 1043.

  16. E. Fry, J. Katz, R. Nicolaescu, and T. Walther, in Proceedings of Ocean Optics XIV, 1998.

  17. E. Fry, G. Xiao, and J. Katz, in Proceedings of Ocean Optics XV, 2002.

  18. A. Popescu, K. Schorstein, and T. Walther, Appl. Phys. B 79, 955 (2004).

    Article  ADS  Google Scholar 

  19. A. Popescu and T. Walther, Laser Phys. 15, 55 (2005).

    Google Scholar 

  20. A. Popescu, D. Walldorf, K. Schorstein, and T. Walther, Opt. Comm. 264, 475 (2006).

    Article  ADS  Google Scholar 

  21. H. Pask, R. Carman, D. Hanna, et al., IEEE J. Sel. Top. Quantum Electron. 1, 2 (1995).

    Article  Google Scholar 

  22. C. Korb, B. Gentry, and C. Weng, Appl. Opt. 31, 4202 (1992).

    ADS  Google Scholar 

  23. J. Limpert, T. Schreiber, T. Clausnitzer, et al., Opt. Express 10, 628 (2002).

    ADS  Google Scholar 

  24. A. Galvanauskas, IEEE J. Sel. Top. Quantum Electron. 7, 504 (2001).

    Article  Google Scholar 

  25. J. Limpert, S. Höfer, A. Liem, et al., Appl. Phys. B 75, 477 (2002).

    Article  ADS  Google Scholar 

  26. D. Bradley, in Ultrashort Light Pulses, Ed. by S. Shapiro (Springer, Heidelberg, 1977), Vol. 18, Chap. 2, pp. 17–81.

    Google Scholar 

  27. R. Nicolaescu, E. Fry, and T. Walther, Opt. Lett. 26, 13 (2001).

    ADS  Google Scholar 

  28. R. Smith, Appl. Opt. 11, 2489 (1972).

    ADS  Google Scholar 

  29. J. Toulouse, J. Lightwave Technol. 23, 3625 (2005).

    Article  ADS  Google Scholar 

  30. G. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, 1995; Mir, Moscow, 1996).

    Google Scholar 

  31. A. Hardy and R. Oron, IEEE J. Quantum Eelectron. 33, 307 (1997).

    Article  ADS  Google Scholar 

  32. L. Zenteno, J. Lightwave Technol. 11, 1435 (1993).

    Article  ADS  Google Scholar 

  33. I. Duling and R. Esman, Electron. Lett. 28, 1126 (1992).

    Article  ADS  Google Scholar 

  34. J. Breguet and N. Gisin, Opt. Lett. 20, 1447 (1995).

    ADS  Google Scholar 

  35. Y. Ohman, Stockholm Obs. Ann. 19, 3 (1956).

    ADS  Google Scholar 

  36. P. Yeh, Appl. Opt. 21, 2069 (1981).

    Article  ADS  Google Scholar 

  37. B. Yin, L. Alvarez, and T. Shay, TDA Prog. Rep. 42, 116 (1994).

    Google Scholar 

  38. A. Smith, SNLO Nonlinear Optics Code Available from Sandia National Laboratories, Albuquerque, 2002, NM 87185-1423 through http://www.sandia.gov/imrl/XWEB1128/xxtal.htm.

  39. L. Barbier and M. Cheret, J. Phys. B.: At. Mol. Phys. 16, 3213 (1983).

    Article  ADS  Google Scholar 

  40. L.-A. Liewa, S. Knappe, J. Moreland, et al., Appl. Phys. Lett. 84, 2694 (2004).

    Article  ADS  Google Scholar 

  41. E. Fry, G. Kattawar, J. Pan, and T. Walther, US Patent 6388246 (2002).

  42. A. Bungert, Master’s Thesis (Univ. of Darmstadt, 2006).

  43. T. Walther, J. Katz, D. Liu, et al., in Ocean Optics XIV (ONR, 1998), no. 1044.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Text © Astro, Ltd., 2007

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schorstein, K., Scheich, G., Popescu, A. et al. A fiber amplifier and an ESFADOF: Developments for a transceiver in a Brillouin lidar. Laser Phys. 17, 975–982 (2007). https://doi.org/10.1134/S1054660X07070122

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X07070122

PACS numbers

Navigation