Skip to main content
Log in

Instabilities and vortex-lattice formation in rotating conventional and dipolar dilute-gas Bose-Einstein condensates

  • Physics of Cold Trapped Atoms
  • Published:
Laser Physics

Abstract

A theoretical study of vortex-lattice formation in atomic Bose-Einstein condensates confined by a rotating elliptical trap is presented. For the conventional case of purely s-wave interatomic interactions, this is done through a consideration of both hydrodynamic equations and time-dependent simulations of the Gross-Pitaevskii equation. We discriminate three distinct, experimentally testable regimes of instability: ripple, interbranch, and catastrophic. Additionally, we generalize the classical hydrodynamical approach to include long-range dipolar interactions, showing how the static solutions and their stability in the rotating frame are significantly altered. This enables us to examine the routes towards unstable dynamics, which, in analogy to conventional condensates, may lead to vortex-lattice formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K. W. Madison, F. Chevy, W. Wohlleben, and J. Dalibard, Phys. Rev. Lett. 84, 806 (2000).

    Article  ADS  Google Scholar 

  2. K. W. Madison, F. Chevy, V. Bretin, and J. Dalibard, Phys. Rev. Lett. 86, 4443 (2001).

    Article  ADS  Google Scholar 

  3. E. Hodby et al., Phys. Rev. Lett. 88, 010405 (2001).

  4. A. Recati, F. Zambelli, and S. Stringari, Phys. Rev. Lett. 86, 377 (2001).

    Article  ADS  Google Scholar 

  5. S. Sinha and Y. Castin, Phys. Rev. Lett. 87, 190402 (2001).

    Google Scholar 

  6. C. Lobo, A. Sinatra, and Y. Castin, Phys. Rev. Lett. 92, 020403 (2004).

    Google Scholar 

  7. M. Tsubota, K. Kasamatsu, and M. Ueda, Phys. Rev. A 65, 023603 (2002); K. Kasamatsu, M. Tsubota, and M. Ueda, Phys. Rev. A 67, 033610 (2003).

  8. A. A. Penckwitt, R. J. Ballagh, and C. W. Gardiner, Phys. Rev. Lett. 89, 260402 (2002).

    Google Scholar 

  9. E. Lundh, J.-P. Martikainen, and K.-A. Suominen, Phys. Rev. A 67, 063604 (2003).

    Google Scholar 

  10. N. G. Parker and C. S. Adams, Phys. Rev. Lett. 95, 145301 (2005).

    Google Scholar 

  11. N. G. Parker and C. S. Adams, J. Phys. B 39, 43 (2006).

    Article  ADS  Google Scholar 

  12. N. G. Parker, R. M. W. van Bijnen, and A. M. Martin, Phys. Rev. A 73, 061603(R) (2006).

  13. I. Corro, N. G. Parker, and A. M. Martin, J. Phys. B 40, 3615 (2007).

    Article  ADS  Google Scholar 

  14. J. R. Abo-Shaeer, C. Raman, and W. Ketterle, Phys. Rev. Lett. 88, 070409 (2002).

    Google Scholar 

  15. A. Griesmaier et al., Phys. Rev. Lett. 94, 160401 (2005).

  16. N. R. Cooper, E. H. Rezayi, and S. H. Simon, Phys. Rev. Lett. 95, 200402 (2005).

    Google Scholar 

  17. J. Zhang and H. Zhai, Phys. Rev. Lett. 95, 200403 (2005).

  18. S. Yi and H. Pu, Phys. Rev. A 73, 061602(R) (2006).

  19. R. M. W. van Bijnen, D. H. J. O’Dell, N. G. Parker, and A. M. Martin, Phys. Rev. Lett. 98, 150401 (2007).

    Google Scholar 

  20. D. H. J. O’Dell, S. Giovanazzi, and C. Eberlein, Phys. Rev. Lett. 92, 250401 (2004).

    Google Scholar 

  21. M. Marinescu and L. You, Phys. Rev. Lett. 81, 4596 (1998).

    Article  ADS  Google Scholar 

  22. S. Yi and L. You, Phys. Rev. A 61, 041604(R) (2000).

  23. K. Góral, K. Rzążewski, and T. Pfau, Phys. Rev. A 61, 051601(R) (2000).

  24. L. Santos, G. V. Shlyapnikov, P. Zoller, and M. Lewenstein, Phys. Rev. Lett. 85, 1791 (2000).

    Article  ADS  Google Scholar 

  25. The limit where the zero-point kinetic energy (quantum pressure) is negligible compared to the potential and interaction energies.

  26. C. Eberlein, S. Giovanazzi, and D. H. J. O’Dell, Phys. Rev. A 71, 033618 (2005).

    Google Scholar 

  27. Y. Castin, in Coherent Matter Waves, Lecture Notes of Les Houches Summer School, Ed. by R. Kaiser, C. Westbrook, and F. David (Springer-Verlag, Berlin, 2001), p. 1–136.

    Chapter  Google Scholar 

  28. L. Pitaevskii and S. Stringari, Bose-Einstein Condensation (Oxford Univ. Press, London, 2003).

    MATH  Google Scholar 

  29. For n > 3 we find that although there are more eigenvalues the region of instability, defined by max[Re(λ) > 0], remains the same.

  30. E. Lundh, C.J. Pethick and H. Smith, Phys. Rev. A 55, 2126 (1997).

    Article  ADS  Google Scholar 

  31. D. H. J. O’Dell and C. Eberlein, Phys. Rev. A. 75, 013604 (2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Martin.

Additional information

Original Text © Astro, Ltd., 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, A.M., Parker, N.G., van Bijnen, R.M.W. et al. Instabilities and vortex-lattice formation in rotating conventional and dipolar dilute-gas Bose-Einstein condensates. Laser Phys. 18, 322–330 (2008). https://doi.org/10.1134/S1054660X08030225

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X08030225

PACS numbers

Navigation