Skip to main content
Log in

Light parameters influence cell viability in antifungal photodynamic therapy in a fluence and rate fluence-dependent manner

  • Laser Methods in Chemistry, Biology, and Medicine
  • Published:
Laser Physics

Abstract

The aim of this study was to investigate the influence of light parameters on yeast cells. It has been proposed for many years that photodynamic therapy (PDT) can inactivate microbial cells. A number of photosensitizer and light sources were reported in different light parameters and in a range of dye concentrations. However, much more knowledge concerning the importance of fluence, fluence rate and exposure time are required for a better understanding of the photodynamic efficiency. Suspensions (106 CFU/mL) of Candida albicans, Candida krusei, and Cryptococcus neoformans var. grubii were used. Two fluence rates, 100 and 300 mW/cm2 were compared at 3, 6, and 9 min of irradiation, resulting fluences from 18 to 162 J/cm2. The light source was a laser emitting at λ = 660 nm with output power adjusted at 30 and 90 mW. As photosensitizer, one hundred-μM methylene blue was used. Temperature was monitored to verify possible heat effect and reactive oxygen species (ROS) formation was evaluated. The same fluence in different fluence rates showed dissimilar levels of inactivation on yeast cells as well as in ROS formation. In addition, the increase of the fluence rate showed an improvement on cell photoinactivation. PDT was efficient against yeast cells (6 log reduction), and no significant temperature increase was observed. Fluence per se should not be used as an isolate parameter to compare photoinactivation effects on yeast cells. The higher fluence rate was more effective than the lower one. Furthermore, an adequate duration of light exposure cannot be discarded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. N. Demidova and M. R. Hamblin, Int. J. Immunopathol. Pharmacol. 17, 245 (2004).

    Google Scholar 

  2. R. A. Prates, A. M. Yamada, Jr., L. C. Suzuki, M. C. Eiko Hashimoto, S. Cai, S. Gouw-Soares, L. Gomes, and M. S. Ribeiro, J. Photoch. Photobiol. B. 86, 70 (2007).

    Article  Google Scholar 

  3. Y. N. Konan, R. Gurny, and E. Allemann, J. Photochem. Photobiol. B 66, 89 (2002).

    Article  Google Scholar 

  4. I. M. Bevilacqua, R. A. Nicolau, S. Khouri, A. Brugnera, Jr., G. R. Teodoro, R. A. Zangaro, and M. T. Pacheco, Photomed. Laser Surg. 25, 513 (2007).

    Article  Google Scholar 

  5. G. Monfrecola, E. M. Procaccini, M. Bevilacqua, A. Manco, G. Calabro, and P. Santoianni, Photochem. Photobiol. Sci. 3, 419 (2004).

    Article  Google Scholar 

  6. A. S. Garcez, M. S. Ribeiro, G. P. Tegos, S. C. Nunez, A. O. Jorge, and M. R. Hamblin, Lasers Surg. Med. 39, 59 (2007).

    Article  Google Scholar 

  7. M. B. Fonseca, P. O. Junior, R. C. Pallota, H. F. Filho, O. V. Denardin, A. Rapoporl, R. A. Dedivitis, J. F. Veronezi, W. J. Genovese, and A. L. Ricardo, Photomed. Laser Surg. 26, 209 (2008).

    Article  Google Scholar 

  8. A. M. Freydiere, R. Guinet, and P. Boiron, Med. Mycol. 39, 9 (2001).

    Article  Google Scholar 

  9. R. F. Donnelly, P. A. McCarron, and M. M. Tunney, Microbiol. Res. 163, 1 (2008).

    Article  Google Scholar 

  10. A. Schindl, B. Rosado-Schlosser, and F. Trautinger, Hautarzt 52, 779 (2001).

    Article  Google Scholar 

  11. T. N. Demidova and M. R. Hamblin, Int. J. Immunopathol. Pharmacol. 17, 245 (2004).

    Google Scholar 

  12. T. N. Demidova and M. R. Hamblin, Antimicrob. Agents Chemother. 49, 2329 (2005).

    Article  Google Scholar 

  13. S. C. Souza, J. C. Junqueira, I. Balducci, C. Y. Koga-Ito, E. Munin, and A. O. Jorge, J. Photoch. Photobiol. B 83, 34 (2006).

    Article  Google Scholar 

  14. E. Munin, L. M. Giroldo, L. P. Alves, and M. S. Costa, J. Photochem. Photobiol. B 88, 16 (2007).

    Article  Google Scholar 

  15. R. Ackroyd, C. Kelty, N. Brown, and M. Reed, Photochem. Photobiol. 74, 656 (2001).

    Article  Google Scholar 

  16. G. P. Tegos, M. Anbe, C. Yang, T. N. Demidova, M. Satti, P. Mroz, S. Janjua, F. Gad, and M. R. Hamblin, Antimicrob. Agents Chemother. 50, 1402 (2006).

    Article  Google Scholar 

  17. G. P. Tegos, T. N. Demidova, D. Arcila-Lopez, H. Lee, T. Wharton, H. Gali, and M. R. Hamblin, Chem. Biol. 12, 1127 (2005).

    Article  Google Scholar 

  18. A. H. Machado, F. M. Braga, C. P. Soares, M. M. Pelisson, M. Beltrame, and N. S. Da Silva, Photomed. Laser Surg. 25, 220 (2007).

    Article  Google Scholar 

  19. J. Ferreira, P. F. C. Menezes, C. Kurachi, C. Sibata, R. R. Allison, and V. S. Bagnato, Laser Phys. Lett. 5, 156 (2008).

    Article  Google Scholar 

  20. R. A. Prates, E. G. d. Silva, A. M. Yamada, Jr., L. C. Suzuki, C. R. Paula, and M. S. Ribeiro, in Mechanisms for Low-Light Therapy III, Ed. by M. R. Hamblin, R. W. Waynantand, and J. Anders, Proc. of SPIE 684606 (2008).

  21. M. Wilson, T. Burns, J. Pratten, and G. J. Pearson, J. Appl. Bacteriol. 78, 569–574(1995).

    Google Scholar 

  22. T. N. Demidova, F. Gad, T. Zahra, K. P. Francis, and M. R. Hamblin, J. Photoch. Photobiol. B 81, 15 (2005).

    Article  Google Scholar 

  23. A. S. Garcez, S. C. Nunez, M. R. Hamblin, and M. S. Ribeiro, J. Endod. 34, 138 (2008).

    Article  Google Scholar 

  24. J. D. Spikes and J. C. Bommer, Photochem. Photobiol. 58, 346 (1993).

    Article  Google Scholar 

  25. B. D. Jett, K. L. Hatter, M. M. Huycke, and M. S. Gilmore, BioTechniques 23, 648 (1997).

    Google Scholar 

  26. M. A. Pfaller. L. Burmeister, M. S. Bartlett, and M. G. Rinaldi, J. Clin. Microbiol. 26, 1437 (1988).

    Google Scholar 

  27. I. Kraljic and S. E. Mohsni, Photochem. Photobiol. 28, 577 (1978).

    Article  Google Scholar 

  28. I. Kraljic, Biochimie 68, 807 (1986).

    Article  Google Scholar 

  29. E. G. Silva. A. Baroni Fde, F. C. Viani, S. Ruiz Lda, R. F. Gandra, M. E. Auler, A. L. Dias, W. Gambale, and C. R. Paula, J. Med. Microbiol. 55, 139 (2006).

    Article  Google Scholar 

  30. R. A. Seaton, S. Naraqi, J. P. Wembri, and D. A. Warrell, J. Med. Vet. Mycol. 35, 7 (1997)

    Article  Google Scholar 

  31. R. J. Hay, J. Antimicrob. Chemother. B 28(Suppl.), 17 (1991).

    Google Scholar 

  32. Y. C. Chang and K. J. Kwon-Chung, J. Bacteriol. 181, 5636 (1999).

    Google Scholar 

  33. A. Casadevall, J. Mukherjee, R. Yuan, and J. Perfect, Clin. Infect. Dis. 19, 951 (1994).

    Google Scholar 

  34. B. B. Fuchs, G. P. Tegos, M. R. Hamblin, and E. Mylonakis, Antimicrob. Agents Chemother. 51, 2929 (2007).

    Article  Google Scholar 

  35. K. Konopka and T. Goslinski, J. Dent. Res. 86, 694–707 (2007).

    Article  Google Scholar 

  36. G. Jori, C. Fabris, M. Soncin, S. Ferro, O. Coppellotti, D. Dei, L. Fantetti, G. Chiti, and G. Roncucci, Lasers Surg. Med. 38, 468 (2006).

    Article  Google Scholar 

  37. J. M. Bliss, C. E. Bigelow, T. H. Foster, and C. G. Haidaris, Antimicrob. Agents Chemother. 48, 2000 (2004).

    Article  Google Scholar 

  38. T. Ito, Photochem. Photobiol. 25, 47–53 (1977).

    Article  Google Scholar 

  39. R. F. Donnelly, P. A. McCarron, M. M. Tunney, and A. D. Woolfson, J. Photoch. Photobiol. B 86, 59 (2007).

    Article  Google Scholar 

  40. Y. Qin, X. Luan, L. Bi, G. He, X. Bai, C. Zhou, and Z. Zhang, Laser Med. Sci. 23, 49–54 (2008).

    Article  Google Scholar 

  41. R. S. Cavalcante, H. Imasato, V. S. Bagnato, and J. R. Perussi, Laser Phys. Lett. 6, 64 (2009).

    Article  Google Scholar 

  42. M. N. Usacheva, M. C. Teichert, and M. A. Bid, J. Photochem. Photobiol. B 71, 87 (2003).

    Article  Google Scholar 

  43. Y. Y. Tian, F. Kong, X. Tian, Q. Guo, and F. A. Cui, Laser Phys. Lett. 5, 764 (2008).

    Article  Google Scholar 

  44. Y. Y. Tian, D. D. Xu, X. Tian, F. A. Cui, H. Q. Yuan, and W. N. Leung, Laser Phys. Lett. 5, 746 (2008).

    Article  Google Scholar 

  45. S. A. Lambrechts, T. N. Demidova, M. C. Aalders, T. Hasan, and M. R. Hamblin, Photochem. Photobiol. Sci. 4, 503 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renato A. Prates.

Additional information

Original Text © Astro, Ltd., 2009.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prates, R.A., da Silva, E.G., Yamada, A.M. et al. Light parameters influence cell viability in antifungal photodynamic therapy in a fluence and rate fluence-dependent manner. Laser Phys. 19, 1038–1044 (2009). https://doi.org/10.1134/S1054660X09050284

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X09050284

PACS numbers

Navigation