Skip to main content
Log in

Modeling of large flattened mode area fiber lasers

  • Published:
Laser Physics

Abstract

Potentialities of independent tailoring the index and gain profiles in fiber laser aiming to achieve a strong modal discrimination are theoretically examined. It is demonstrated by numerical simulations existence of fiber amplifier constructions which have the flattened fundamental mode profile in the gain region. It is shown that the fundamental mode retain the largest modal gain in comparison with modal gains of higher-order-modes for any depletion of the gain by the fundamental mode. The particular design is presented with the flattened fundamental mode area 6360 μm squared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridhanan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, Opt. Express 16, 13240 (2008).

    Article  ADS  Google Scholar 

  2. Y. Jeong, J. Sahu, D. Payne, and J. Nilsson, Opt. Express 12, 6088 (2004).

    Article  ADS  Google Scholar 

  3. J. Limpert, A. Liem, M. Reich, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, and C. Jakobsen, Opt. Express 12, 1313 (2004).

    Article  ADS  Google Scholar 

  4. C. D. Brooks and F. Di Teodoro, Appl. Phys. Lett. 89, 111119 (2006).

    Article  ADS  Google Scholar 

  5. W. S. Wong, X. Peng, J. M. McLaughlin, and L. Dong, Opt. Lett. 30, 2855 (2005).

    Article  ADS  Google Scholar 

  6. M. E. Fermann, Opt. Lett. 23, 52 (1998).

    Article  ADS  Google Scholar 

  7. S. Ramachandran, J. W. Nicholson, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, Opt. Lett. 31, 1797 (2006).

    Article  ADS  Google Scholar 

  8. P. K. Cheo, A. Liu, and G. G. King, IEEE Photon. Technol. Lett. 13, 439 (2001).

    Article  ADS  Google Scholar 

  9. A. Mafi and J. V. Moloney, J. Opt. Soc. Am. B 21, 879 (2004).

    Article  Google Scholar 

  10. D. Botez, in Diode Laser Arrays, Ed. by D. Botez and D. Scifres (Cambridge U.K.: Cambridge Univ. Press, 1994), pp. 1–71.

    Chapter  Google Scholar 

  11. R. J. Beach, M. D. Feit, and R. H. Page, D. Brasure LeAnn, R. Wilcox, and S. A. Payne, J. Opt. Soc. Am. B 19, 1521 (2002).

    Article  ADS  Google Scholar 

  12. D. V. Vysotskii, A. P. Napartovich, and A. G. Trapeznikov, Quantum Electron. 33, 1089 (2003).

    Article  Google Scholar 

  13. A. E. Siegman, J. Opt. Soc. Am. B 24, 1677 (2007).

    Article  ADS  Google Scholar 

  14. V. Sudesh, T. McComb, Y. Chen, M. Bass, M. Richardson, J. Ballato, and A. E. Siegman, Appl. Phys. B 90, 369 (2008).

    Article  ADS  Google Scholar 

  15. Z. Jiang and J. R. Marciante, J. Opt. Soc. Am. B 25, 247 (2008).

    Article  ADS  Google Scholar 

  16. T. Bhutta, J. I. Mackenzie, D. P. Shepherd, and R. J. Beach, J. Opt. Soc. Am. B 19, 1539 (2002).

    Article  ADS  Google Scholar 

  17. J. Limpert, H. Zellmer, A. Tuennermann, T. Pertsch, and F. Lederer, in Techn. Dig. Adv. Sol. State Las. Conf., New York, 2002, pp. 112–114.

  18. M. Gong, Y. Yuan, C. Li, P. Yan, H. Zhang, and S. Liao, Opt. Express 15, 3236 (2007).

    Article  ADS  Google Scholar 

  19. H. L. Offerhaus, N. G. Broderick, D. J. Richardson, R. Sammut, J. Caplen, and L. Dong, Opt. Lett. 23, 2683 (1998).

    Article  Google Scholar 

  20. D. V. Vysotskii, N. N. Elkin, and A. P. Napartovich, Quantum Electron. 38, 707 (2008).

    Article  ADS  Google Scholar 

  21. R. L. Farrow, D. A. V. Kliner, G. R. Hadley, and A. V. Smith, Opt. Lett. 31, 3423 (2006).

    Article  ADS  Google Scholar 

  22. L. Sun and J. R. Marciante, J. Opt. Soc. Am. B 24, 2321 (2007).

    Article  MathSciNet  ADS  Google Scholar 

  23. N. N. Elkin, A. P. Napartovich, V. N. Troshchieva, and D. V. Vysotsky, in Numerical Analysis and Applied Mathematics, AIP Conf. Proc. 936, 166 (2007).

    ADS  Google Scholar 

  24. W. P. Huang, C. L. Xu, W. Lui, and K. Yokoyama, IEEE Photon., Technol. Lett. 8, 652 (1996).

    Article  ADS  Google Scholar 

  25. Y. Saad, Numerical Methods for Large Eigenvalue Problem. Manchester (UK: Manchester University Press, 1992).

    Google Scholar 

  26. N. N. Elkin, A. P. Napartovich, V. N. Troshchieva, and D. V. Vysotsky, J. Lightwave Technol. 25, 3072 (2007).

    Article  ADS  Google Scholar 

  27. N. N. Elkin, A. P. Napartovich, V. N. Troshchieva, and D. V. Vysotsky, Opt. Commun. 277, 390 (2007).

    Article  ADS  Google Scholar 

  28. J. W. Dawson, R. J. Beach, S. A. Payne, M. D. Feit, C. P. J. Barty, and Z. M. Liao, “Flattened mode cylindrical and ribbon fibers and amplifiers,” U.S. Patent No. 0247272 A1 (December 9, 2004).

  29. C. C. Wang, F. Zhang, Y. C. Lu, C. Liu, R. Geng, T. G. Ning, and S. S. Jian, J. Opt. A: Pure Appl. Opt. 11, 065402 (2009).

    Article  ADS  Google Scholar 

  30. A. K. Ghatak, I. C. Goyal, and R. Jindal, Proc. SPIE 3666, 40 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Elkin.

Additional information

Original Russian Text © Astro, Ltd., 2010.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elkin, N.N., Napartovich, A.P., Troshchieva, V.N. et al. Modeling of large flattened mode area fiber lasers. Laser Phys. 20, 304–310 (2010). https://doi.org/10.1134/S1054660X10030060

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X10030060

Keywords

Navigation