Skip to main content
Log in

Quantitative Evaluation of Porosity in Unidirectional CFRPs Using Laser Ultrasonic Method

  • ACOUSTIC METHODS
  • Published:
Russian Journal of Nondestructive Testing Aims and scope Submit manuscript

Abstract

A method for estimating the porosity of CFRPs based on measuring their acoustic impedances is proposed and experimentally implemented. The acoustic impedance of the test sample is derived from the magnitude of the antiderivative of an ultrasonic pulse reflected from the immersion-liquid–sample interface. The studied samples are unidirectional CFRPs with various volume contents of the matrix and filler. It has been established that the distribution of local porosity in the samples is uneven along the carbon fiber stacking plane. The value of porosity averaged over the results of optical–acoustic measurements with allowance for measurement errors is consistent with the X-ray tomography data. The method for estimating the value of porosity presented in this paper does not involve measuring the volume and mass of the object under study and can be used in diagnostics of complex shaped composite structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Soutis, C., Fibre reinforced composites in aircraft construction, Prog. Aerosp. Sci., 2005, vol. 41, pp. 143–151.

    Article  Google Scholar 

  2. Chand, S., Carbon fibers for composites, J. Mater. Sci., 2000, vol. 35, pp. 1303–1313.

    Article  CAS  Google Scholar 

  3. Boichuk, A.S., Dikov, I.A., Chertishchev, V.A., and Generalov, A.S., Determining porosity of monolithic zones in aircraft parts and assemblies made of PCMs using ultrasound pulse echo method, Russ. J. Nondestr. Test., 2019, vol. 55, no. 1, pp. 1-7.

    Article  Google Scholar 

  4. Stepanova, L.N., Petrova, E.S., and Chernova, V.V., Strength tests of a CFRP spar using methods of acoustic emission and tensometry, Russ. J. Nondestr. Test., 2018, vol. 54, no. 4, pp. 243–248.

    Article  Google Scholar 

  5. Lyubin, J., Spravochnik po kompozitsionnym materialam (Handbook of Composite Materials), Moscow: Mashinostroenie, 1988.

  6. Perepelkin, K.E., Armiruyushchie volokna i voloknistye polimernye kompozity (Reinforcing Fibers and Fibrous Polymer Composites), St. Petersburg: Nauchn. Osnovy Tekhnol., 2009.

  7. Adams, R.D. and Cawle, P., A review of defect types and nondestructive testing techniques for composites and bonded joints, NDT&E Int., 1988, vol. 21, no. 4, pp. 208–222.

    Article  CAS  Google Scholar 

  8. Gunyaev, G.M., Struktura i svoistva polimernykh voloknistykh kompozitov (Structure and Properties of Polymer Fibrous Composites), Moscow: Khimiya, 1981.

  9. Scott, A.E., Sinclair, I., Spearing, S.M., Mavrogordato, M.N., and Hepples, W., Influence of voids on damage mechanisms in carbon/epoxy composites determined via high resolution computed tomography, Compos. Sci. Technol., 2014, vol. 90, pp. 147–153.

    Article  CAS  Google Scholar 

  10. Stamopoulos, A.G. and Ilio, A.D., On the predictive tools for assessing the effect of manufacturing defects on the mechanical properties of composite materials, Procedia CIRP, 2019, vol. 79, pp. 563–567.

    Article  Google Scholar 

  11. Dushin, M.I., Donetskii, K.I., and Karavaev, R.Yu., Establishing reasons for the formation of porosity in the manufacture of PCMs, Elektron. Nauchn. Zh. “Tr. VIAM,” 2016, no. 6.

  12. Chimenti, D.E., Review of air-coupled ultrasonic materials characterization, Ultrasonics, 2014, vol. 54, pp. 1804–1816.

    Article  CAS  Google Scholar 

  13. Ibrahim, M.E., Nondestructive evaluation of thick-section composites and sandwich, Composites, Part A, 2014, vol. 64, pp. 36–48.

    Article  CAS  Google Scholar 

  14. Sachse, W., Castagnede, B., Grabec, I., Kim, K.Y., and Weaver, R.L., Recent developments in quantitative ultrasonic NDE of composites, Ultrasonics, 1990, vol. 28, pp. 97–104.

    Article  Google Scholar 

  15. Green, R.E., Jr., Non-contact ultrasonic techniques, Ultrasonics, 2004, vol. 42, pp. 9–16.

    Article  Google Scholar 

  16. Potapov, A.I. and Makhov, V.E., Methods for nondestructive testing and diagnostics of durability of articles made of polymer composite materials, Russ. J. Nondestr. Test., 2018, vol. 54, no. 3, pp. 151–163.

    Article  CAS  Google Scholar 

  17. Vavilov, V.P., Thermal nondestructive testing of materials and products: a review, Russ. J. Nondestr. Test., 2017, vol. 53, no. 10, pp. 707–730.

    Article  Google Scholar 

  18. Chulkov, A.O., Vavilov, V.P., and Nesteruk, D.A., An automated practical flaw-identification algorithm for active thermal testing procedures, Russ. J. Nondestr. Test., 2018, vol. 54, no. 4, pp. 278–282.

    Article  Google Scholar 

  19. Karabutov, A.A., Podymova, N.B., and Belyaev, I.O., The influence of porosity on ultrasound attenuation in carbon fiber reinforced plastic composites using the laser-ultrasound spectroscopy, Acoust. Phys., 2013, vol. 59, no. 6, pp. 667–673.

    Article  Google Scholar 

  20. Sokolovskaya, Yu.G. and Karabutov, A.A., Laser ultrasonic inspection of structures made of multiaxial polymer composite materials, Konstr. Kompoz. Mater., 2018, no. 1, pp. 56–60.

  21. Karabutov, A.A. and Podymova, N.B., Nondestructive porosity assessement of CFRP composites with spectral analysis of backscattered laser-induced ultrasonic pulses, J. Nondestr. Eval., 2013, vol. 32, no. 2, pp. 315–324.

    Article  Google Scholar 

  22. Karabutov, A.A., Jr., Karabutov, A.A., and Sapohznikov, O.A., Determination of the elastic properties of layered materials using laser excitation of ultrasound, Phys. Wave Phenom., 2010, vol. 18, no. 4, pp. 297–302.

    Article  Google Scholar 

  23. Fizicheskie velichiny/Spravochnik (Physical Quantities: A Reference Book), Grigor’ev, I.S. and Meilikhov, E.Z., Eds., Moscow: Energoatomizdat, 1991.

  24. Polyakov, V.V. and Golovin, A.V., Effect of porosity on the speed of ultrasonic waves in metals, Pis’ma Zh. Tekh. Fiz., 1994, vol. 20, no. 11, pp. 54–57.

    CAS  Google Scholar 

  25. Polyakov, V.V. and Golovin, A.V., Elastic characteristics of porous materials, Prikl. Mekh. Tekh. Fiz., 1993, vol. 34, no. 5, pp. 32–35.

    Google Scholar 

  26. Karabutov, A.A. and Sokolovskaya, Yu.G., Laser optoacoustic measurement of the volume concentration of epoxy resin in carbon fiber reinforced plastic composites, Moscow Univ. Phys. Bull., 2018, vol. 73, no. 6, pp. 622–626.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. G. Sokolovskaya, N. B. Podymova or A. A. Karabutov.

Additional information

Translated by V. Potapchouck

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sokolovskaya, Y.G., Podymova, N.B. & Karabutov, A.A. Quantitative Evaluation of Porosity in Unidirectional CFRPs Using Laser Ultrasonic Method. Russ J Nondestruct Test 56, 201–208 (2020). https://doi.org/10.1134/S1061830920030109

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061830920030109

Keywords:

Navigation