Skip to main content
Log in

Gap-length mapping for periodic Jacobi matrices

  • Published:
Russian Journal of Mathematical Physics Aims and scope Submit manuscript

Abstract

We construct a real analytic isomorphism between periodic Jacobi operators and the spectral data formed by the gap lengths, the distances between the Dirichlet eigenvalues and the center of the corresponding gap, and some signs. This proves the uniqueness of the solution of the inverse problem and gives a characterization of the solution. Moreover, two-sided a priori estimates of periodic Jacobi operators in terms of gap lengths are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Bättig, B. Grebert, J.-C. Guillot, and T. Kappeler, “Fibration of the Phase Space of the Periodic Toda Lattice,” J. Math. Pures Appl. (9) 72(6), 553–565 (1993).

    MathSciNet  Google Scholar 

  2. J. Garnett and E. Trubowitz, “Gaps and Bands of One-Dimensional Periodic Schrödinger Operators. II,” Comment. Math. Helv. 62(1), 18–37 (1987).

    MathSciNet  Google Scholar 

  3. P. Deift and B. Simon, “Almost Periodic Schrödinger Operators. III. The Absolutely Continuous Spectrum in One Dimension,” Commun. Math. Phys. 90, 389–411 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  4. P. Kargaev and E. Korotyaev, “The Inverse Problem for the Hill Operator, the Direct Approach,” Invent. Math. 129(3), 567–593 (1997).

    Article  MathSciNet  Google Scholar 

  5. E. Korotyaev, “Characterization of the Spectrum of Schrödinger Operators with Periodic Distributions,” Int. Math. Res. Not. 37, 2019–2031 (2003).

    MATH  MathSciNet  Google Scholar 

  6. E. Korotyaev, “Inverse Problem and the Trace Formula for the Hill Operator, II,” Math. Z. 231, 345–368 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  7. E. Korotyaev and I. Krasovsky, “Spectral Estimates for Periodic Jacobi Matrices,” Comm. Math. Phys. 234(3), 517–532 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  8. E. Korotyaev and A. Kutsenko, Inverse Problem for Periodic Jacobi Matrices, preprint 2004.

  9. Y. Last, “On the Measure of Gaps and Spectra for Discrete 1D Schrödinger Operators,” Commun. Math. Phys. 149, 347–360 (1992).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. P. van Moerbeke, “The Spectrum of Jacobi Matrices,” Invent. Math. 37(1), 45–81 (1976).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. V. Marchenko, Sturm-Liouville Operators and Applications (Birkhauser, Basel, 1986).

    Google Scholar 

  12. S. Novikov, S. Manakov, L. Pitaevskii, and V. Zakharov, Theory of Solitons. The Inverse Scattering Method, Contemporary Soviet Mathematics (Consultants Bureau [Plenum], New York, 1984).

    Google Scholar 

  13. L. Perkolab, “An Inverse Problem for a Periodic Jacobi Matrix,” Teor. Funktsii Funktsional. Anal. i Prilozhen. 42, 107–121 (1984).

    MATH  MathSciNet  Google Scholar 

  14. J. Pöschel and E. Trubowitz, Inverse Spectral Theory, Pure and Applied Mathematics 130 (Academic Press, Boston, 1987).

    Google Scholar 

  15. G. Teschl, Jacobi Operators and Completely Integrable Nonlinear Lattices, Mathematical Surveys and Monographs 72 (American Mathematical Society, Providence, RI, 2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to the memory of B. M. Levitan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korotyaev, E. Gap-length mapping for periodic Jacobi matrices. Russ. J. Math. Phys. 13, 64–69 (2006). https://doi.org/10.1134/S1061920806010067

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061920806010067

Keywords

Navigation