Skip to main content
Log in

Orientation-induced redox transformations in Langmuir monolayers of double-decker cerium bis[tetra-(15-crown-5)-phthalocyaninate] and multistability of its Langmuir-Blodgett films

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

The spectral, electrochemical, and optical properties of Langmuir-Blodgett films (LBFs) and cast films from a solution of new double-decker cerium bis[tetra-(15-crown-5)-phthalocyaninate] (Ce(R4Pc)2) are studied. Based on analysis of compression isotherms and quantum-chemical calculations, schemes of the organization of Ce(R4Pc)2 molecules at different states of its monolayers are proposed. Correlation dependences are determined in order to relate the optical and electrochemical characteristics of monolayers and LBFs of sandwich-type lanthanide phthalocyaninates to the ionic radii of their metal centers. The valent state of Ce ions in a monolayer-forming complex is determined, and a sequence of redox transformations occurring in LBF uppon appliance of a potential is proposed, one of the transformations being associated with the Ce3+/Ce4+ redox transition. Orientation-induced intramolecular electron transfer is revealed in the planar supramolecular system. It is shown that, during the formation of a monolayer from a Ce(R4Pc)2 solution, a tetravalent metal center passes to a trivalent state. Monolayer compression to a high surface pressure reverts the complex to the electronic state typical of the solution. The reversible transformations observed upon the monolayer compression result from intramolecular electron transfer from the 4f-orbital of Ce to the phthalocyanine ring and backwards. The high operation rate and the reversibility of switching between the stable states, which are determined by means of the surface plasmon resonance technique, upon a stepwise change in the electrode potential within the range of 200–850 mV may underlie the development of optoelectronic systems. With a large number of molecules in a stacking aggregate, changes in the distance between the decks of the complex that occur with changes in the oxidation level of the metal center can substantially modulate the sizes of molecular ensembles. A supramolecular device capable of performing mechanical work can be developed based on this effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Leznoff, C.C. and Lever, A.B.P., in Phthalocyanines. Properties and Application. Vols. 1–4, Leznoff, C.C. and Lever, A.B.P., Eds., New York: VCH, 1989, 1982, 1993, 1996.

    Google Scholar 

  2. The Porphyrin Handbook, Vols. 1–20, Kadish, K.M., Smith, K.M., and Guilard, R., Eds., San Diego: Academic, 2000.

    Google Scholar 

  3. Moskalev, P.N., Koord. Khim., 1990, vol. 16, p. 147.

    CAS  Google Scholar 

  4. Nalwa, H.S., in Supramolecular Photosensitive and Electroactive Materials, Nalwa, H.S., Ed., New York: Academic, 2001, p. 113.

    Google Scholar 

  5. Ng, D.K.P. and Jiang, J., Chem. Soc. Rev., 1997, vol. 26, p. 433.

    Article  CAS  Google Scholar 

  6. Tomilova, L.G., Chernykh, E.V., Nikolaeva, T.B., et al., Zh. Obshch. Khim., 1984, vol. 54, p. 1678.

    CAS  Google Scholar 

  7. Bian, Y., Jiang, J., Tao, Y., et al., J. Am. Chem. Soc., 2003, vol. 125, p. 12257.

    Article  CAS  Google Scholar 

  8. Haghighi, M.S. and Homborg, H., Z. Naturforsch. B, 1991, vol. 46, p. 1641.

    CAS  Google Scholar 

  9. Ostendorp, G., Rotter, H.W., and Homborg, H., Z. Naturforsch., A: Phys. Sci., 1996, vol. 51, p. 567.

    CAS  Google Scholar 

  10. Hückstädt, H., Tuta, A., Goldner, M., et al., Z. Anorg. Allg. Chem., 2001, vol. 627, p. 485.

    Article  Google Scholar 

  11. Jiang, J., Liu, W., Poon, K.-W., et al., Eur. J. Inorg. Chem., 2000, p. 205.

  12. Gorbunova, Yu.G., Lapkina, L.A., and Tsivadze, A.Yu., J. Coord. Chem., 2003, vol. 56, p. 1223.

    Article  CAS  Google Scholar 

  13. Gorbunova, Yu.G., Lapkina, L.A., Martynov, A.G., et al., Koord. Khim., 2004, vol. 30, p. 263.

    Google Scholar 

  14. Martynov, A.G., Biryukova, I.V., Gorbunova, Yu.G., and Tsivadze, A.Yu., Zh. Neorg. Khim., 2004, vol. 49, p. 407.

    CAS  Google Scholar 

  15. Lapkina, L.A., Gorbunova, Yu.G., Larchenko, V.E., and Tsivadze, A.Yu., Zh. Neorg. Khim., 2003, vol. 48, p. 1164.

    CAS  Google Scholar 

  16. Toupance, T., Ahsen, V., and Simon, J., J. Am. Chem. Soc., 1994, vol. 116, p. 5352.

    Article  CAS  Google Scholar 

  17. Selector, S.L., Arslanov, V.V., Gorbunova, Y.G., et al., J. Porphyrins Phthalocyanines, 2008, vol. 12, p. 1154.

    Article  CAS  Google Scholar 

  18. Birin, K.P., Gorbunova, Yu.G., and Tsivadze, A.Yu., J. Porphyrins Phthalocyanines, 2006, vol. 10, p. 931.

    Article  CAS  Google Scholar 

  19. Birin, K.P., Gorbunova, Yu.G., and Tsivadze, A.Yu., Zh. Neorg. Khim., 2007, vol. 52, p. 232.

    CAS  Google Scholar 

  20. Nefedova, I.V., Gorbunova, Yu.G., Sakharov, S.G., and Tsivadze, A.Yu., Zh. Neorg. Khim., 2005, vol. 50, p. 204.

    CAS  Google Scholar 

  21. Tolkaeva, E.O., Tsivadze, A.Yu., Bitiev, Sh.G., et al., Zh. Neorg. Khim., 1995, vol. 40, p. 984.

    Google Scholar 

  22. Grüniger, H., Möbius, D., and Meyer, H., J. Chem. Phys., 1983, vol. 79, p. 3701.

    Article  Google Scholar 

  23. Orrit, M., Möbius, D., Meyer, H., and Lehmann, U., J. Chem. Phys., 1986, vol. 85, p. 4966.

    Article  CAS  Google Scholar 

  24. Frisch, G.W., Trucks, H.B., Schlegel, et al., Gaussian 03, Revision B.01, Pittsburgh: Gaussian, 2003.

    Google Scholar 

  25. Liu, W., Jiang, J., Du, D., and Arnold, D.P., Aust. J. Chem., 2000, vol. 53, p. 131.

    Article  CAS  Google Scholar 

  26. Isago, H. and Shimoda, M., Chem. Lett., 1992, vol. 21, p. 147.

    Article  Google Scholar 

  27. Aroca, R. and Johnson, E., Langmuir, 1992, vol. 8, p. 3137.

    Article  CAS  Google Scholar 

  28. Hoeben, F.J.M., Jonkheijm, P., Meijer, E.W., and Schenning, A.P.H.J., Chem. Rev., 2005, vol. 105, p. 1491.

    Article  CAS  Google Scholar 

  29. Boguslavskii, L.I. and Vannikov, A.V., Organicheskie poluprovodniki i biopolimery (Organic Semiconductors and Biopolymers), Moscow: Nauka, 1968.

    Google Scholar 

  30. Gutman, F. and Lyons, L., Organic Semiconductors, New York: Wiley, 1967.

    Google Scholar 

  31. Ishikawa, N., Okubo, T., and Kaizu, Y., Inorg. Chem., 1999, vol. 38, p. 3173.

    Article  CAS  Google Scholar 

  32. Rodríguez-Méndez, M.L., Souto, J., De Saja-González, J., and De Saja, J.A., Sens. Actuators, 1996, vol. 31, p. 51.

    Article  Google Scholar 

  33. Gorbunova, Yu.G., Rodriquez-Mendez, M.L., Kalashnikova, I.P., et al., Langmuir, 2001, vol. 17, p. 5004.

    Article  CAS  Google Scholar 

  34. Bardin, M., Bertounesque, E., Plichon, V., et al., J. Electroanal. Chem., 1989, vol. 271, p. 173.

    Article  CAS  Google Scholar 

  35. NIST X-ray Photoelectron Spectroscopy Database http://srdata.nist.gov/xps/main_search_menu.aspx

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is dedicated to Academician A.I. Rusanov 80th anniversary.

Original Russian Text © S.L. Selektor, A.V. Shokurov, O.A. Raitman, L.S. Sheinina, V.V. Arslanov, K.P. Birin, Yu.G. Gorbunova, A.Yu. Tsivadze, 2012, published in Kolloidnyi Zhurnal, 2012, Vol. 74, No. 3, pp. 359–370.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Selektor, S.L., Shokurov, A.V., Raitman, O.A. et al. Orientation-induced redox transformations in Langmuir monolayers of double-decker cerium bis[tetra-(15-crown-5)-phthalocyaninate] and multistability of its Langmuir-Blodgett films. Colloid J 74, 334–345 (2012). https://doi.org/10.1134/S1061933X12020111

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X12020111

Keywords

Navigation