Skip to main content
Log in

Comprehensive study of electrosurface properties of detonation nanodiamond particle agglomerates in aqueous KCl solutions

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

The electrosurface properties of nanoporous agglomerates of detonation nanodiamond (DND) particles purified from acidic impurities by dialysis are comprehensively investigated. Acid-base potentiometric titration, laser Doppler electrophoresis, and conductometry are employed to measure the adsorption isotherms \(\Gamma _{H^ + } (pH)\) and \(\Gamma _{OH^ - } (pH)\) of potential-determining ions, as well as the dependences of surface charge density σ0, electrophoretic mobility u e, and specific conductivity K p of the agglomerates on the pH = 3.5–10.5 of aqueous 0.0001–0.1 M KCl solutions. The obtained adsorption isotherms indicate heterogeneity of the DND surface, i.e., the presence of different proton-donor and proton-acceptor surface functional groups. Computer simulation of the adsorption isotherms is carried out for a DND surface containing two types of functional groups, namely, acidic carboxyl (-COOH) and amphoteric hydroxyl (-COH) groups, the predominant content of which is confirmed by FTIR spectroscopy data. The optimal values are determined for the reaction constants of ionization of these groups. It is revealed that the effective conductivity of the porous agglomerates is one or two orders of magnitude higher than the conductivity of equilibrium solutions. Corresponding values of electrokinetic potential ξ are calculated as functions of pH and KCl concentration from the electrophoretic mobility of the agglomerates using different equations of electrophoresis theory. It is shown that use of the Miller formula, which takes into account the electromigration fluxes of ions and electroosmotic flows of solutions in pores of dispersed particles, yields more correct ξ potential values for DND agglomerates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baidakova, M. and Vul’, A., J. Phys. D: Appl. Phys., 2007, vol. 40, p. 6300.

    Article  CAS  Google Scholar 

  2. Schrand, A.M., Ciftan Hens, S.A., and Shenderova, O.A., Crit. Rev. Solid State Mater. Sci., 2009, vol. 34, p. 18.

    Article  CAS  Google Scholar 

  3. Shenderova, O. and Vul’, A.Ya., in Synthesis, Properties and Applications of Ultrananocrystalline Diamond, Gruen, D., Ed., Dordrecht: Springer, 2005, p. 231.

    Google Scholar 

  4. Ultra-Nanocrystaline Diamond: Synthesis, Properties and Applications, Shenderova, O. and Gruen, D., Eds., New York: William Andrew, 2006.

    Google Scholar 

  5. Aleksenskiy, A., Baidakova, M., Osipov, V., and Vul’, A., in Nanodiamonds: Applications in Biology and Nanoscale Medicine, Dean Ho, Ed., Dordrecht: Springer, 2009.

    Google Scholar 

  6. Chiganova, G.A., Kolloidn. Zh., 2000, vol. 62, p. 272.

    Google Scholar 

  7. Gibson, ò., Shenderova, O., Luo, T.J.M., et al., Diamond Relat. Mater., 2009, vol. 18, p. 620.

    Article  CAS  Google Scholar 

  8. Vul, A.Ya., Eydelman, E.D., Inakuma, M., and Osawa, E., Diamond Relat. Mater., 2007, vol. 16, p. 2023.

    Article  CAS  Google Scholar 

  9. Xu, X., Yu, Z., Zhu, Y., and Wang, B., J. Solid State Chem., 2005, vol. 178, p. 688.

    Article  CAS  Google Scholar 

  10. Tu, J.S., Perevedentseva, E., Chung, P.H., et al., J. Chem. Phys., 2006, vol. 125, p. 174713.

    Article  Google Scholar 

  11. Aleksenskii, A.E., Vul’, A.Ya., and Yagovkina, M.A., RF Patent 2322389, 2008.

  12. Zhukov, A.N., Gareeva, F.R., Aleksenskii, A.E., and Vul’, A.Ya., ÊÎlloidn. Zh., 2010, vol. 72, p. 635.

    Google Scholar 

  13. Street, N., Austral. J. Chem., 1956, vol. 9, p. 333.

    Article  CAS  Google Scholar 

  14. Wagner, K.W., Die Isolierstoffe der Elektrotechnic, Berlin: Springer, 1924.

    Google Scholar 

  15. Delgado, A.V, González-Caballero, F., Hunter, R.J., et al., J. Colloid Interface Sci., 2007, vol. 309, p. 194.

    Article  CAS  Google Scholar 

  16. Ohshima, H., J. Colloid Interface Sci., 1994, vol. 168, p. 269.

    Article  CAS  Google Scholar 

  17. Surfactant Sci. Ser., 2002, vol. 106.

  18. Encyclopedia of Surface and Colloid Science, Hubbard, A.T., Ed., New York: Marcel Dekker, 2002, vols. 1–4.

    Google Scholar 

  19. Dukhin, S.S. and Derjaguin, B.V., Electrophoresis, Ìoscow: Nauka, 1976.

    Google Scholar 

  20. Wiersema, P.H., Loeb, A.L., and Overbeek, J.T.G., J. Colloid Interface Sci., 1966, vol. 22, p. 78.

    Article  CAS  Google Scholar 

  21. O’Brien, R.W. and White, L.R., J. Chem. Soc., Faraday Trans. 2, 1978, vol. 74, p. 1607.

    Article  Google Scholar 

  22. Mangelsdorf, C.S. and White, L.R., J. Chem. Soc., Faraday Trans., 1998, vol. 94, p. 2441.

    Article  CAS  Google Scholar 

  23. Ohshima, H., J. Colloid Interface Sci., 2001, vol. 239, p. 587.

    Article  CAS  Google Scholar 

  24. Möller, J.H.N., Van Os, G.A.J., and Overbeek, J.Th.G., Trans. Faraday Soc., 1961, vol. 57, p. 325.

    Article  Google Scholar 

  25. Levine, S. and Neale, G.H., J. Colloid Interface Sci., 1974, vol. 47, p. 520.

    Article  Google Scholar 

  26. Ohshima, H., J. Colloid Interface Sci., 1997, vol. 188, p. 481.

    Article  CAS  Google Scholar 

  27. Miller, N.P., Berg, J.C., and O’Brien, R.W., J. Colloid Interface Sci., 1992, vol. 153, p. 234.

    Google Scholar 

  28. Miller, N.P. and Berg, J.C., J. Colloid Interface Sci., 1993, vol. 159, p. 253.

    Article  CAS  Google Scholar 

  29. Kosmulski, M., Surfactant Sci. Ser., 2001, vol. 102, p. 65.

    Article  Google Scholar 

  30. Kosmulski M., Surfactant Sci. Ser., 2009, vol. 145, p. 66.

    Google Scholar 

  31. Ohshima, H., Healy, T.W., and White, L.R., J. Colloid Interface Sci., 1982, vol. 90, p. 17.

    Article  CAS  Google Scholar 

  32. Turner, B.F. and Fein, J.B., Comput. Geosci., 2006, vol. 32, p. 1344.

    Article  CAS  Google Scholar 

  33. Zhu, Y.W., Shen, X.Q., Zhu, Y., et al., Fiz. Tverd. Tela (S.-Peterburg), 2004, vol. 46, p. 665.

    Google Scholar 

  34. Xu, X., Yu, Zh., Zhu, Y., and Wang, B., Diamond Relat. Mater., 2005, vol. 14, p. 206.

    Article  CAS  Google Scholar 

  35. Petrov, I., Shenderova, O., Grishko, V., et al., Diamond Relat. Mater., 2009, vol. 16, p. 2098.

    Article  Google Scholar 

  36. Jee, A.Y. and Lee, M., Curr. Appl. Phys., 2009, vol. 9, p. 144.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.N. Zhukov, F.R. Gareeva, A.E. Aleksenskii, 2012, published in Kolloidnyi Zhurnal, 2012, Vol. 74, No. 4, pp. 483–491.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhukov, A.N., Gareeva, F.R. & Aleksenskii, A.E. Comprehensive study of electrosurface properties of detonation nanodiamond particle agglomerates in aqueous KCl solutions. Colloid J 74, 463–471 (2012). https://doi.org/10.1134/S1061933X12040163

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X12040163

Keywords

Navigation