Skip to main content
Log in

Self-organization in the chitosan-clay nanoparticles system regulated through polysaccharide macromolecule charging. 2. Films

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

Formation conditions are studied for bionanocomposite films prepared by mixing cationic chitosan with negatively charged nanoparticles of a synthetic clay (saponite) followed by gradual increasing of the charge of macromolecules by decreasing the pH of a medium. The data on the swelling of the bionanocomposite films in water are used to determine the stoichiometric ratio between the concentrations of macromolecules and nanoparticles that provides the most intense electrostatic interactions stabilizing the films. Their properties and structure are investigated by means of scanning electron microscopy, dynamic thermomechanical analysis, and small-angle X-ray scattering. The films are shown to occur in a glassy state and undergo a number of phase transitions, the temperatures of which depend on the chitosan-to-saponite concentration ratio. In particular, their glass transition temperature increases from 62 to 175°C when passing to the stoichiometric composition. The bionanocomposite films are found to have a layered structure. The layers are, in turn, composed of highly uniform microsized plates 20–30 nm thick. Small-angle X-ray scattering shows a structural order with a periodicity of 1.78 nm. The structure of the bionanocomposite films is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shchipunov, Y.A., Ivanova, N., and Silant’ev, V., Green Chem., 2009, vol. 11, p. 1758.

    Article  CAS  Google Scholar 

  2. Ruiz-Hitzky, E., Darder, M., and Aranda, P., in Bioinorganic Hybrid Nanomaterials, Ruiz-Hitzky, E., Ariga, K., and Lvov, Y.M., Eds., Weinheim: Wiley-VCH, 2007, p. 1.

    Chapter  Google Scholar 

  3. Rhim, J.W. and Ng, P.K.W., Crit. Rev. Food Sci. Nutr., 2007, vol. 47, p. 411.

    Article  CAS  Google Scholar 

  4. Mayer, G., Science (Washington, D. C.), 2005, vol. 310, p. 1144.

    Article  CAS  Google Scholar 

  5. Bonderer, L.J., Studart, A.R., and Gauckler, L.J., Science (Washington, D. C.), 2008, vol. 319, p. 1069.

    Article  CAS  Google Scholar 

  6. Darder, M., Colilla, M., and Ruiz-Hitzky, E., Chem. Mater., 2003, vol. 15, p. 3774.

    Article  CAS  Google Scholar 

  7. Rhim, J.W., Food Sci. Biotechnol., 2006, vol. 15, p. 925.

    CAS  Google Scholar 

  8. Podsiadlo, P., Tang, Z., Shim, B.S., and Kotov, N.A., Nano Lett., 2007, vol. 7, p. 1224.

    Article  CAS  Google Scholar 

  9. Yao, H.B., Tan, Z.H., Fang, H.Y., and Yu, S.H., Angew. Chem., Int. Ed. Engl., 2010, vol. 49, p. 10127.

    Article  CAS  Google Scholar 

  10. Lvov, Yu.M., Encyclopedia of Surface and Colloid Science, Hubbard, A.T., Ed., New York: Marcel Dekker, 2002, p. 4162.

    Google Scholar 

  11. Wang, Y., Angelatos, A.S., and Caruso, F., Chem. Mater., 2008, vol. 20, p. 848.

    Article  CAS  Google Scholar 

  12. Roberts, G.A.F., Chitin Chemistry, Basingstoke: Macmillan Education, 1992.

    Google Scholar 

  13. Rinaudo, M., Prog. Polym. Sci., 2006, vol. 31, p. 603.

    Article  CAS  Google Scholar 

  14. Khunawattanakul, W., Puttipipatkhachorn, S., Rades, T., and Pongjanyakul, T., Int. J. Pharm., 2010, vol. 393, p. 220.

    Article  Google Scholar 

  15. Zezin, A.B. and Kabanov, V.A., Usp. Khim., 1982, vol. 51, p. 1447.

    Article  CAS  Google Scholar 

  16. Kabanov, V.A. and Zezin, A.B., Pure Appl. Chem., 1984, vol. 56, p. 343.

    Article  CAS  Google Scholar 

  17. Shchipunov, Y.A. and Postnova, I.V., Compos. Interfaces, 2009, vol. 16, p. 251.

    Article  CAS  Google Scholar 

  18. Caruso, F., Adv. Mater. (Weinheim, Fed. Repub. Ger.), 2001, vol. 13, p. 11.

    Article  CAS  Google Scholar 

  19. Sukhishvili, S.A., Kharlampieva, E., and Izumrudov, V., Macromolecules, 2006, vol. 39, p. 8873.

    Article  CAS  Google Scholar 

  20. Dong, Y., Ruan, Y., Wang, H., et al., J. Appl. Polym. Sci., 2004, vol. 93, p. 1553.

    Article  CAS  Google Scholar 

  21. Martinez-Camacho, A.P., Cortez-Rocha, M.O., Ezquerra-Brauer, J.M., et al., Carbohydr. Polym., 2010, vol. 82, p. 305.

    Article  CAS  Google Scholar 

  22. Mucha, M. and Pawlak, A., Thermochim. Acta, 2005, vol. 427, p. 69.

    Article  CAS  Google Scholar 

  23. Entsiklopediya polimerov (Encyclopedia of Polymers), Moscow: Sovetskaya Entsiklopediya, 1977, vol. 3.

  24. Manard, K.P., Dynamic Mechanical Analysis: A Practical Introduction, Boca Raton: CRC, 2008.

    Book  Google Scholar 

  25. Maniukiewicz, W., in Chitin, Chitosan, Oligosaccharides and Their Derivatives: Biological Activities and Applications, Kim, S.-K., Ed., Boca Raton: CRC, 2011, p. 83.

    Google Scholar 

  26. Sakurai, K., Maegawa, T., and Takahashi, T., Polymer, 2000, vol. 41, p. 7051.

    Article  CAS  Google Scholar 

  27. Matsuo, M., Nakano, Y., Nakashima, T., and Bin, Y., in Chitin, Chitosan, Oligosaccharides and Their Derivatives: Biological Activities and Applications, Kim, S.-K., Ed., Boca Raton: CRC, 2011, p. 95.

    Google Scholar 

  28. Cervera, M.F., Heinamaki, J., Rasanen, M., et al., Carbohydr. Polym., 2004, vol. 58, p. 401.

    Article  CAS  Google Scholar 

  29. Cheung, M.K., Wan, P.Y., and Yu, P.H., J. Appl. Polym. Sci., 2002, vol. 86, p. 1253.

    Article  CAS  Google Scholar 

  30. Godovskii, Yu.K., Teplofizika polimerov (Thermal Physics of Polymers), Moscow: Khimiya, 1982.

    Google Scholar 

  31. Neto, C.G.T., Giacometti, J.A., Job, A.E., et al., Carbohydr. Polym., 2005, vol. 62, p. 97.

    Article  CAS  Google Scholar 

  32. Toffey, A. and Glasser, W., Cellulose, 2001, vol. 8, p. 35.

    Article  CAS  Google Scholar 

  33. Quijada-Garrido, I., Iglesias-Gonzalez, V., Mazon-Arechederra, J.M., and Barrales-Rienda, J.M., Carbohydr. Polym., 2007, vol. 68, p. 173.

    Article  CAS  Google Scholar 

  34. Guan, Y., Liu, X., Zhang, Y., and Yao, K., J. Appl. Polym. Sci., 1998, vol. 67, p. 1965.

    Article  CAS  Google Scholar 

  35. Al-Sagheer, F.A. and Merchant, S., Carbohydr. Polym., 2011, vol. 85, p. 356.

    Article  CAS  Google Scholar 

  36. Hsu, S., Chang, Y.B., Tsai, C.L., et al., Colloids Surf. B, 2011, vol. 85, p. 198.

    Article  CAS  Google Scholar 

  37. Duncan, J., in Principles and Applications of Thermal Analysis, Gabbott, P., Ed., Oxford: Blackwell, 2008, p. 119.

    Chapter  Google Scholar 

  38. Ratto, J., Hatakeyama, T., and Blumstein, R.B., Polymer, 1995, vol. 36, p. 2915.

    Article  CAS  Google Scholar 

  39. Gunister, E., Pestreli, D., Unly, G.H., et al., Carbohydr. Polym., 2007, vol. 67, p. 358.

    Article  Google Scholar 

  40. Lazaridou, A. and Biliaderis, C.G., Carbohydr. Polym., 2002, vol. 48, p. 179.

    Article  CAS  Google Scholar 

  41. Suyatma, N.E., Tighzert, L., Copinet, A., and Coma, V., J. Agric. Food Chem., 2005, vol. 53, p. 3950.

    Article  CAS  Google Scholar 

  42. Zhu, L., in Handbook of Thermal Analysis and Calorimetry. Vol. 3: Applications to Polymers and Plastics, Cheng, S.Z.D., Ed., Amsterdam: Elsevier, 2002, p. 355.

    Google Scholar 

  43. Pizzoli, M., Ceccorulli, G., and Scandola, M., Carbohydr. Res., 1991, vol. 222, p. 205.

    Article  CAS  Google Scholar 

  44. Brigatti, M.F., Galan, E., and Theng, B.K.G., in Handbook of Clay Science. Vol. 1. Developments in Clay Science, Bergaya, F., Theng, B.K.G., and Lagaly, G., Eds., Amsterdam: Elsevier, 2006, p. 19.

    Google Scholar 

  45. Utracki, L.A., Clay-Containing Polymeric Nanocomposites, Shawbury: Rapra, 2004.

    Google Scholar 

  46. Darder, M., Colilla, M., and Ruiz-Hitzky, E., Appl. Clay Sci., 2005, vol. 28, p. 199.

    Article  CAS  Google Scholar 

  47. Darder, M., Aranda, P., Ruiz, A.I., et al., Mater. Sci. Technol., 2008, vol. 24, p. 1100.

    Article  CAS  Google Scholar 

  48. Wang, S.F., Chen, L., and Tong, Y.J., J. Polym. Sci., Part A: Polym. Chem., 2006, vol. 44, p. 686.

    Article  CAS  Google Scholar 

  49. Wang, L. and Wang, A., J. Hazard. Mater., 2007, vol. 147, p. 979.

    Article  CAS  Google Scholar 

  50. Schaefer, H.-E., Nanoscience. The Science of the Small in Physics, Engineering, Chemistry, Biology and Medicine, Heidelberg: Springer, 2010.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © Yu.A. Shchipunov, S.A. Sarin, V.E. Silant’ev, I.V. Postnova, 2012, published in Kolloidnyi Zhurnal, 2012, Vol. 74, No. 5, pp. 663–672.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shchipunov, Y.A., Sarin, S.A., Silant’ev, V.E. et al. Self-organization in the chitosan-clay nanoparticles system regulated through polysaccharide macromolecule charging. 2. Films. Colloid J 74, 636–644 (2012). https://doi.org/10.1134/S1061933X12050109

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X12050109

Keywords

Navigation