Skip to main content
Log in

Collective interactions in the mechanism of adhesion of condensed phase nuclei to a crystal surface. 2. Thermodynamic stability

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

The Monte Carlo method is used to calculate, at the molecular level, the free energy, entropy, and the work of formation at an initial stage of nucleation of a condensed phase from water vapor on the surface of a solid crystalline silver iodide substrate. The pattern of the obtained dependences confirms the pronounced layer-by-layer character of the growth of nuclei and the thermodynamic stability of a molecular film formed at the contact with the substrate. An increased hydrophilicity of the substrate surface with respect to the first monomolecular layer is enhanced by the formation of regions of spontaneous polarization in the latter. The reasons for the thermodynamic advantage of the separation of the nucleus contact layer on the substrate into domains with different types of polarization are analyzed in terms of a lattice model. Computer simulation within the framework of the lattice model demonstrates that a rise in the polarizability of the substrate is accompanied by a continuous increase in the equilibrium sizes of the domains; moreover, the model predicts their strongly nonlinear dependence on both temperature and the polarizability of the substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hill, T.L., Statistical Mechanics. Principles and Selected Applications, New York: McGraw-Hill, 1956.

    Google Scholar 

  2. Torrie, G.M. and Valleau, J.P., J. Comput. Phys., 1977, vol. 23, p. 187.

    Article  Google Scholar 

  3. Virnau, P. and Muller, M., J. Chem. Phys., 2004, vol. 120, p. 10925.

    Article  CAS  Google Scholar 

  4. Kumar, S., Bouzida, D., Swendsen, R.H., et al., J. Comput. Chem., 1992, vol. 13, p. 1011.

    Article  CAS  Google Scholar 

  5. Kumar, S., Rosenberg, J.M., Bouzida, D., et al., J. Comput. Chem., 1995, vol. 16, p. 1339.

    Article  CAS  Google Scholar 

  6. Wu, D., J. Chem. Phys., 2008, vol. 128, p. 224105.

    Article  Google Scholar 

  7. Virnau, P. and Muller, M., J. Chem. Phys., 2004, vol. 120, p. 10925.

    Article  CAS  Google Scholar 

  8. Hooft, R.W.W., Van Eijck, B.P., and Kroon, J., J. Chem. Phys., 1992, vol. 97, p. 6690.

    Article  CAS  Google Scholar 

  9. Bartels, C. and Karplus, M., J. Comput. Chem., 1997, vol. 18, p. 1450.

    Article  CAS  Google Scholar 

  10. Zwanzig, R.W., J. Chem. Phys., 1954, vol. 22, p. 1420.

    Article  CAS  Google Scholar 

  11. Hahn, A.M. and Then, H., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 2009, vol. 79, p. 011113.

    Article  CAS  Google Scholar 

  12. Jarzynski, C., Phys. Rev. Lett., 1997, vol. 78, p. 2690.

    Article  CAS  Google Scholar 

  13. Jarzynski, C., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 2002, vol. 65, p. 046122.

    Article  CAS  Google Scholar 

  14. Kofke, D.A., Mol. Phys., 2004, vol. 102, p. 405.

    Article  CAS  Google Scholar 

  15. Min, D. and Yang, W., J. Chem. Phys., 2008, vol. 128, p. 191102.

    Article  Google Scholar 

  16. Zhou, H.-X., J. Chem. Phys., 2008, vol. 128, p. 114104.

    Article  Google Scholar 

  17. Ytreberg, F.M., Swendsen, R.H., and Zuckerman, D.M., J. Chem. Phys., 2006, vol. 125, p. 184114.

    Article  Google Scholar 

  18. Bash, P.A., Singh, U.C., Langridge, R., and Kollman, P.A., Science (Washington, D. C.), 1987, vol. 236, p. 564.

    Article  CAS  Google Scholar 

  19. Kollman, P.A., Chem. Rev., 1993, vol. 93, p. 2395.

    Article  CAS  Google Scholar 

  20. Widom, B., J. Chem. Phys., 1963, vol. 39, p. 2808.

    Article  CAS  Google Scholar 

  21. Nie, Ch., Geng, J., and Marlow, W.H., J. Chem. Phys., 2008, vol. 128, p. 234310.

    Article  Google Scholar 

  22. Powles, J.G., Baker, S.E., and Evans, W.A.B., J. Chem. Phys., 1994, vol. 101, p. 408.

    Google Scholar 

  23. Powles, J.G., Holtz, B., and Evans, W.A.B., J. Chem. Phys., 1994, vol. 101, p. 7804.

    Article  CAS  Google Scholar 

  24. Kirkwood, J.G., J. Chem. Phys., 1935, vol. 3, p. 300.

    Article  CAS  Google Scholar 

  25. Nezbeda, I. and Kolafa, J., Mol. Simul., 1991, vol. 5, p. 391.

    Article  Google Scholar 

  26. Kolafa, J., Vortler, H.L., Aim, K., and Nezbeda, I., Mol. Simul., 1993, vol. 11, p. 305.

    Article  CAS  Google Scholar 

  27. Vortler, H.L. and Kettler, M., Chem. Phys. Lett., 2003, vol. 377, p. 557.

    Article  CAS  Google Scholar 

  28. Deng, Yu. and Roux, B., J. Chem. Phys., 2008, vol. 128, p. 115103.

    Article  Google Scholar 

  29. Woods, Ch.J., Manby, F.R., and Mulholland, A.J., J. Chem. Phys., 2008, vol. 128, p. 014109.

    Article  Google Scholar 

  30. Warren, G.L. and Patel, S., J. Chem. Phys., 2007, vol. 127, p. 064509.

    Article  Google Scholar 

  31. Straatsma, T.P., Berendsen, H.J.C., and Postma, J.P.M., J. Chem. Phys., 1986, vol. 85, p. 6720.

    Article  CAS  Google Scholar 

  32. Oostenbrink, Ch. and Van Gunsteren, W.F., Chem. Phys., 2006, vol. 323, p. 102.

    Article  CAS  Google Scholar 

  33. Straatsma, T.P. and McCammon, J.A., J. Chem. Phys., 1991, vol. 95, p. 1175.

    Article  CAS  Google Scholar 

  34. Anwar, J. and Heyes, D.M., J. Chem. Phys., 2005, vol. 122, p. 224117.

    Article  Google Scholar 

  35. Wana, Sh., Stote, R.H., and Karplus, M., J. Chem. Phys., 2004, vol. 121, p. 9539.

    Article  Google Scholar 

  36. Rodriguez-Gomez, D., Darve, E., and Pohorille, A., J. Chem. Phys., 2004, vol. 120, p. 3563.

    Article  CAS  Google Scholar 

  37. Peter, Ch., Oostenbrink, Ch., Van Dorp, A., and Van Gunsteren, W.F., J. Chem. Phys., 2004, vol. 120, p. 2652.

    Article  CAS  Google Scholar 

  38. Bitetti-Putzer, R., Yang, W., and Karplus, M., Chem. Phys. Lett., 2003, vol. 377, p. 633.

    Article  CAS  Google Scholar 

  39. Zheng, L. and Yang, W., J. Chem. Phys., 2008, vol. 129, p. 124107.

    Article  Google Scholar 

  40. Lyubartsev, A.P., Martsinovski, A.A., Shevkunov, S.V., and Vorontsov-Velyaminov, P.N., J. Chem. Phys., 1992, vol. 96, p. 1776.

    Article  CAS  Google Scholar 

  41. Burov, S.V., Vorontsov-Velyaminov, P.N., and Piotrovskaya, E.M., Mol. Simul., 2006, vol. 32, p. 437.

    Article  CAS  Google Scholar 

  42. Lyubartsev, A.P. and Vorontsov-Velyaminov, P.N., Recent Res. Dev. Chem. Phys., 2003, vol. 4, p. 63.

    CAS  Google Scholar 

  43. Aberg, K.M., Lyubartsev, A.P., Jacobsson, S.P., and Laaksonen, A., J. Chem. Phys., 2004, vol. 120, p. 3770.

    Article  CAS  Google Scholar 

  44. Shevkunov, S.V., Kolloidn. Zh., 1983, vol. 45, p. 1019.

    Google Scholar 

  45. Shevkunov, S.V., Martsinovskii, A.A., and VorontsovVel’yaminov, P.N., Teplofiz. Vys. Temp., 1988, vol. 26, p. 246.

    CAS  Google Scholar 

  46. Shevkunov, S.V., Martsinovski, A.A., and Vorontsov-Velyaminov, P.N., Mol. Simul., 1990, vol. 5, p. 119.

    Article  Google Scholar 

  47. Shevkunov, S.V., Dokl. Akad. Nauk, 1998, vol. 363, p. 215.

    CAS  Google Scholar 

  48. Shevkunov, S.V., Elektrokhimiya, 1998, vol. 34, p. 860.

    Google Scholar 

  49. Shevkunov, S.V., Khim. Vys. Energ., 1999, vol. 33, p. 325.

    Google Scholar 

  50. Shevkunov, S.V. and Vegiri, A., J. Chem. Phys., 1999, vol. 111, p. 9303.

    Article  CAS  Google Scholar 

  51. Shevkunov, S.V. and Vegiri, A., Mol. Phys., 2000, vol. 98, p. 149.

    Article  CAS  Google Scholar 

  52. Vegiri, A. and Shevkunov, S.V., J. Chem. Phys., 2000, vol. 113, p. 8521.

    Article  CAS  Google Scholar 

  53. Shevkunov, S.V., Kolloidn. Zh., 2000, vol. 62, p. 569.

    Google Scholar 

  54. Shevkunov, S.V., Kolloidn. Zh., 2002, vol. 64, p. 262.

    Google Scholar 

  55. Shevkunov, S.V., Zh. Obshch. Khim., 2002, vol. 72, p. 735.

    Google Scholar 

  56. Shevkunov, S.V., Zh. Obshch. Khim., 2004, vol. 74, p. 1585.

    Google Scholar 

  57. Shevkunov, S.V., Zh. Fiz. Khim., 2002, vol. 76, p. 583.

    CAS  Google Scholar 

  58. Lukyanov, S.I., Zidi, Z.S., and Shevkunov, S.V., J. Mol. Struct. (THEOCHEM), 2003, vol. 623, p. 221.

    Article  CAS  Google Scholar 

  59. Shevkunov, S.V., Kolloidn. Zh., 2005, vol. 67, p. 561.

    Google Scholar 

  60. Lukyanov, S.I., Zidi, Z.S., and Shevkunov, S.V., J. Mol. Struct. (THEOCHEM), 2005, vol. 725, p. 191.

    Article  CAS  Google Scholar 

  61. Lukyanov, S.I., Zidi, Z.S., and Shevkunov, S.V., Fluid Phase Equilib., 2005, vol. 233, p. 34.

    Article  CAS  Google Scholar 

  62. Shevkunov, S.V., Lukyanov, S.I., Leyssale, J.-M., and Millot, Cl., Chem. Phys., 2005, vol. 310, p. 97.

    Article  CAS  Google Scholar 

  63. Lukyanov, S.I., Zidi, Z.S., and Shevkunov, S.V., Chem. Phys., 2007, vol. 332, p. 188.

    Article  CAS  Google Scholar 

  64. Shevkunov, S.V., Zh. Eksp. Teor. Fiz., 2008, vol. 134, p. 1130.

    Google Scholar 

  65. Shevkunov, S.V., Zh. Eksp. Teor. Fiz., 2009, vol. 135, p. 510.

    Google Scholar 

  66. Shevkunov, S.V., Kolloidn. Zh., 2009, vol. 71, p. 404.

    Google Scholar 

  67. Shevkunov, S.V., Kolloidn. Zh., 2007, vol. 69, p. 409.

    Google Scholar 

  68. Radtsig, A.A. and Smirnov, B.M., Spravochnik po atomnoi i molekulyarnoi fizike (Handbook on Atomic and Molecular Physics), Moscow: Atomizdat, 1980.

    Google Scholar 

  69. Mumma, M.J., Dello, R.N., DiSanti, M.A., et al., Science (Washington, D. C.), 2001, vol. 292, p. 1334.

    Article  CAS  Google Scholar 

  70. MacDowell, L.G., Sanz, E., Vega, C., and Abascal, J.L.F., J. Chem. Phys., 2004, vol. 121, p. 10145.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Shevkunov.

Additional information

Original Russian Text © S.V. Shevkunov, 2012, published in Kolloidnyi Zhurnal, 2012, Vol. 74, No. 5, pp. 634–653.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shevkunov, S.V. Collective interactions in the mechanism of adhesion of condensed phase nuclei to a crystal surface. 2. Thermodynamic stability. Colloid J 74, 608–626 (2012). https://doi.org/10.1134/S1061933X12050122

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X12050122

Keywords

Navigation