Skip to main content
Log in

On hydrodynamic permeability of a membrane built up by porous deformed spheroidal particles

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

This paper concerns the slow viscous flow of an incompressible fluid past a swarm of identically oriented porous deformed spheroidal particles, using particle-in-cell method. The Brinkman’s equation in the porous region and the Stokes equation for clear fluid region in their stream function formulations are used. Explicit expressions are investigated for both the inside and outside flow fields to the first order in a small parameter characterizing the deformation. The flow through the porous oblate spheroid is considered as the particular case of the porous deformed spheroid. The hydrodynamic drag force experienced by a porous oblate spheroid and permeability of a membrane built up by porous oblate spheroids having parallel axis are evaluated. The dependence of the hydrodynamic drag force and the hydrodynamic permeability on particle volume fraction, deformation parameter and viscosity of porous fluid are also discussed. Four known boundary conditions on the hypothetical surface are considered and compared: Happel’s, Kuwabara’s, Kvashnin’s and Cunningham’s (Mehta-Morse’s condition). Some previous results for hydrodynamic drag force and hydrodynamic permeability have been verified. The model suggested can be used for evaluation of changing hydrodynamic permeability of a membrane under applying unidirectional loading in pressure-driven processes (reverse osmosis, nano-, ultra- and microfiltration).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brinkman, H.C., J. Appl. Sci. Res. A, 1947, vol. 1, p. 27.

    Article  Google Scholar 

  2. Dassios, G., Hadjinicolaou, M., Coutelieris, F.A., and Payatakes, A.C., Int. J. Engng. Sci., 1995, vol. 33, p. 1465.

    Article  Google Scholar 

  3. Davis, R.H. and Stone, H.A., Chem. Engng. Sci., 1993, vol. 48, p. 3993.

    Article  CAS  Google Scholar 

  4. Datta, S. and Deo, S., Proc. Ind. Acad. Sci. (Math. Sci.), 2002, vol. 112, p. 463.

    Article  Google Scholar 

  5. Deo, S. and Yadav, P.K., Bull. Cal. Math. Soc., 2008, vol. 100, p. 617.

    Google Scholar 

  6. Deo, S., J. Porous Media, 2009, vol. 12, p. 347.

    Article  CAS  Google Scholar 

  7. Deo, S. and Gupta, B.R., Acta Mechanica, 2009, vol. 203, p. 241.

    Article  Google Scholar 

  8. Yadav, P.K. and Deo, S., Meccanica, 2011, DOI 10.1007/s11012-011-9533-y.

    Google Scholar 

  9. Epstein, N. and Masliyah, J.H., Chem. Engng. J. 1972, vol. 3, p. 169.

    Article  CAS  Google Scholar 

  10. Filippov, A.N., Vasin, S.I., and Starov, V.M., Colloids Surf. A, 2006, vol. 282–283, p. 272.

    Article  Google Scholar 

  11. Boutros, Y.Z., Abd-el-Malek, M.B., Badran, N.A., and Hassan, H.S., Meccanica, 2006, vol. 41, p. 681.

    Article  Google Scholar 

  12. Mukhopadhyay, S. and Layek, G.C., Meccanica, 2009, vol. 44, p. 587.

    Article  Google Scholar 

  13. Happel, J., A. I. Ch. E., 1958, vol. 4, p. 197.

    Article  CAS  Google Scholar 

  14. Happel, J., A. I. Ch. E., 1959, vol. 5(2), p. 174.

    Article  CAS  Google Scholar 

  15. Kuwabara, S., J. Phys. Soc. Japan, 1959, vol. 14, p. 527.

    Article  Google Scholar 

  16. Kvashnin, A.G., Fluid Dynamics, 1979, vol. 14, p. 598.

    Article  Google Scholar 

  17. Mehta, G.D. and Morse, T.F., J. Chem. Phys., 1975, vol. 63, p. 1878.

    Article  CAS  Google Scholar 

  18. Cunningham, E., Proc. R. Soc. Lond. A, 1910, vol. 83, p. 357.

    Article  Google Scholar 

  19. Palaniappan, D., Z. Angew. Math. Physik, 1994, vol. 45, p. 832.

    Article  Google Scholar 

  20. Ramkissoon, H., Acta Mechanica, 1997, vol. 123, p. 227.

    Article  Google Scholar 

  21. Qin, Yu. and Kaloni, P.N., J. Engng. Math. 1988, vol. 22, p. 177.

    Article  Google Scholar 

  22. Srinivasacharya, D., Z. Angew. Math. Mech., 2003, vol. 83, p. 1.

    Article  Google Scholar 

  23. Uchida, S., Int. Sci. Technol. Univ. Tokyo, 1954, vol. 3, p. 97 (Ind. Engng. Chem., vol. 46, p. 1194).

    Google Scholar 

  24. Pal, D. and Mondal, H., Meccanica, 2009, vol. 44, p. 133.

    Article  Google Scholar 

  25. Vasin, S.I. and Filippov, A.N., Colloid J., 2004, vol. 66, p. 266.

    Article  CAS  Google Scholar 

  26. Vasin, S.I., Filippov, A.N., and Starov, V.M., Adv. Colloid Interface Sci., 2008, vol. 139, p. 83.

    Article  CAS  Google Scholar 

  27. Vasin, S.I. and Filippov, A.N., Colloid J., 2009, vol. 71, p. 31.

    Article  CAS  Google Scholar 

  28. Zlatanovski, T., Quart. J. Mech. Appl. Math., 1999, vol. 52, p. 111.

    Article  Google Scholar 

  29. Happel, J., and Brenner, H., Low Reynolds Number Hydrodynamics. Dordrecht: Kluwer, 1991.

    Google Scholar 

  30. Langlois, W.E., Slow Viscous Flow. New York: Macmillan, 1964.

    Google Scholar 

  31. Abramowitz, M. and Stegun, I.A., Handbook of Mathematical Function. New York: Dover Publications, 1970.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pramod Kumar Yadav.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yadav, P.K., Deo, S., Yadav, M.K. et al. On hydrodynamic permeability of a membrane built up by porous deformed spheroidal particles. Colloid J 75, 611–622 (2013). https://doi.org/10.1134/S1061933X13050165

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X13050165

Keywords

Navigation