Skip to main content
Log in

Cytological Bases of Regulatory Development in Echinoderms and Determination in Mollusks

  • DEVELOPMENTAL BIOLOGY
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

Protostomia and Deuterostomia as coelomic animals have a deterministic (mosaic) and regulatory development. The embryogenesis of Protostomia has no tendency toward regulation, which, however, is well developed in Deuterostomia. In our works, the ability to regulate the development of echinoderms, including the effect of gravitational fields on embryos, has been investigated. After centrifugation of sea urchin zygotes, in some cases the blastula is split in half and identical twins develop. The frequency of twins correlates with the cortex rigidity, which is determined by the organization of the cortical cytoskeleton of eggs and embryos. Twins do not form after centrifugation of zygotes in chiton and bivalve mollusks, but in some cases polyembryonic elements develop. Unlike sea urchins, the cortical cytoskeleton in mollusks is finally formed in ovogenesis and is not rearranged during fertilization. The morphogenetic role of the cortex of eggs and embryos in the regulatory development of Deuterostomia and the deterministic (mosaic) development of Protostomia is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Animal Cell Culture. Cell Engeneering, Al-Rubeai, M., Ed., Switzerland: Springer, 2015, 9th ed. https://doi.org/10.1007/978-3-319-10320-4_21

  2. Basic Cell Culture, Davis, J.M., Ed., Oxford Univ. Press. 2002, 2nd ed.

  3. Bearer, E.L., Cytoskeleton in development, Curr. Top. Dev. Biol., 1992, vol. 26, pp. 1–7.

    Article  CAS  Google Scholar 

  4. Becker, K.A. and Hart, N.H., Reorganization of filamentous actin and myosin-II in zebrafish eggs correlates temporally and spatially with cortical granule exocytosis, J. Cell Sci., 1999, vol. 112, pp. 97–110.

    Article  CAS  Google Scholar 

  5. Butler, M., Animal Cell Culture and Technology, London: Taylor Francis Group, 2003–2004. https://doi.org/10.4324/9780203427835

  6. Cai, X. and Zhang, Y., Marine invertebrate cell culture: a decade of development, J. Oceanogr., 2014, vol. 70, pp. 405–414. https://doi.org/10.1007/s10872-014-0242-8

    Article  Google Scholar 

  7. Davidson, E., Deistvie genov v rannem razvitii (Effect of Genes in Early Development), Moscow: Mir, 1972.

  8. Driesch, H., Die isolirten blastomeren des echinidenkeimes, Arch. Entwicklungsmech. Organismen, 1900, vol. 10, pp. 361–384.

    Article  Google Scholar 

  9. Drozdov, A.L., Cortical cytoskeleton of unfertilized and fertilized eggs of Mactra chinensis, Tsitologiya, 1989, vol. 31, pp. 652–656.

    Google Scholar 

  10. Drozdov, A.L. and Svyatogor, G.P., Morphogenetic role of the cortex in the development of twins in sea urchins, Ontogenez, 1987, vol. 18, pp. 540–546.

    CAS  PubMed  Google Scholar 

  11. Drozdov, A.L. and Svyatogor, G.P., Development of centrifuged eggs of the giant oyster, Mactra chinensis, and chiton, Ontogenez, 1989, vol. 20, pp. 135–140.

    Google Scholar 

  12. Drozdov, A.L., Isaeva, V.V., and Podgornaya, O.I., Cortical cytoskeleton of unfertilized and fertilized sea urchin eggs, Tsitologiya, 1987, vol. 29, pp. 267–272.

    CAS  Google Scholar 

  13. Freshney, R., I, Culture of Animal Cells. A Manual of Basic Technique and Spezialized Applications, Wiley-Blackwell, 2010. https://doi.org/10.1002/9780470649367

  14. Geertje, A.U., Hara, K., Koster, C.H., and Kirschner, M.W., Evidence for a functional role of the cytoskeleton in determination of the dorsoventral axis in Xenopus laevis eggs, J. Embryol. Exp. Morphol., 1983, vol. 77, pp. 15–37.

    Google Scholar 

  15. Harvey, E.B., A new method of producing twins, triplets and quadruplets in Arbacia punctulata and their development, Biol. Bull., 1940, vol. 78, pp. 202–216.

    Article  Google Scholar 

  16. Isaeva, V.V., On the morphogenetic role of the cortical cytoskeleton and the plasma membrane of the ovum, Tsitologiya, 1984, vol. 26, pp. 5–13.

    CAS  Google Scholar 

  17. Kirschner, M.W. and Gerhart, J.C., Spatial and temporal changes in the amphibian egg, Bio Sci., 1981, vol. 31, pp. 381–388.

    Google Scholar 

  18. Korochkin, L.I., Vzaimodeistvie genov v razvitii (Interaction of Genes in Development), Moscow: Nauka, 1977.

  19. Levin, V.L., On the problem of determinants functioning at the first stages of somatogenesis in Drosophila, Tsitologiya, 1982, vol. 24, pp. 604–609.

    Google Scholar 

  20. Levin, V.L. and Shvartsman, P.Ya., New data on cell determination in the development of Drosophila (literature review), Tsitologiya, 1980, vol. 22, pp. 1259–1283.

    Google Scholar 

  21. Loeb, J., Ober chemichen Bedingungen fur die Entstehumg einluger Zwiliinge beim Seeigel, Entwicklungsmech. Organismen, 1909, vol. 27, pp. 119–140.

    Google Scholar 

  22. Potts, R.W.A., Gutierrez, A.P., Cortes-Araya, Y., Houston, R.D., and Bean, T.P., Developments in marine invertebrate primary culture reveal novel cell morphologies in the model bivalve Crassostrea gigas, Peer J., 2020, vol. 8, p. 9180. https://doi.org/10.7717/peerj.9180

    Article  Google Scholar 

  23. Presnov, E.V. and Isaeva, V.V., Perestroiki topologii pri morfogeneze (Rearrangements of Topology during Morphogenesis), Moscow: Nauka, 1985.

  24. Raven, X., Oogenez: nakoplenie morfogeneticheskoi informatsii (Oogenesis: Accumulation of Morphogenetic Information), Moscow: Mir, 1964.

  25. Santella, L., Limatola, N., and Chun, J.T., Actin cytoskeleton and fertilization in starfish eggs, in Sexual Reproduction in Animals and Plants, Sawada, H., Inoue, N., and Iwano, M., Eds., Springer Open, 2014, ch. 13, pp. 141–156. https://doi.org/10.1007/978-4-431-54589-7_13

  26. Sardet, C., Speksnijder, J., Inoue, S., and Jaffe, L., Fertilization and ooplasmic movements in the ascidian egg, Development, 1989, vol. 105, pp. 237–249.

    Article  CAS  Google Scholar 

  27. Sawada, T., How ooplasm segregates bipolarly in ascidian eggs, Bull. Mar. Biol. Station, Asamushi: Tohoku Univ., 1983, vol. 17, pp. 123–140.

    Google Scholar 

  28. Sawada, T. and Osanai, K., The cortical contraction related to the ooplasmic segregation in Ciona intestinalis eggs, W. Boux’s Arch. Dev. Biol., 1984, vol. 190, pp. 208–214.

    Article  Google Scholar 

  29. Shimizu, T., Cytoskeletal mechanisms of ooplasmic segregation in annelid eggs, Int. J. Dev. Biol., 1999, vol. 43, pp. 11–18.

    CAS  PubMed  Google Scholar 

  30. Schroeder, T.E., Expressions of the prefertilization polar axis in sea urchin eggs, Dev. Biol., 1980, vol. 79, pp. 428–443.

    Article  CAS  Google Scholar 

  31. Singer, R.H., The cytoskeleton and mRNA localization, Curr. Opin. Cell Biol., 1992, vol. 4, pp. 15–19.

    Article  CAS  Google Scholar 

  32. Speksnijder, J.E., Christian, SardetCh., and Jaffe, L.F., The activation wave of calcium in the ascidian egg and its role in ooplasmic segregation, J. Cell Biol., 1990, vol. 110, pp. 1589–1598.

    Article  CAS  Google Scholar 

  33. Wessells, N.K., A catalogue of processes responsible for metazoan morphogenesis, Life Sci. Res. Rep., 1982, vol. 22, pp. 115–154.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Drozdov.

Ethics declarations

The author declares that he has no conflict of interest. This article does not contain any studies involving animals or human participants performed by the author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drozdov, A.L. Cytological Bases of Regulatory Development in Echinoderms and Determination in Mollusks. Biol Bull Russ Acad Sci 48, 530–535 (2021). https://doi.org/10.1134/S1062359021040063

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359021040063

Navigation