Skip to main content
Log in

NAP Family Histone Chaperones: Characterization and Role in Ontogenesis

  • REVIEWS
  • Published:
Russian Journal of Developmental Biology Aims and scope Submit manuscript

Abstract

Histone chaperones are a class of proteins that bind and transport histones, preventing their chaotic aggregation when forming nucleosomes. Histone chaperones of the NAP (Nucleosome Assembly Protein) family contain a highly conserved central NAP domain, which is necessary for histone binding and nucleosome assembly. They are an essential component in creating and maintaining the eukaryotic chromatin dynamics on which the transcription of many genes depends. The review considers the NAP family of proteins and its specific representatives: NAP1, NAP2, and CG5017/Hanabi. Since they are canonical histone transporters providing effective chromatin remodeling, NAP family proteins are involved in neuronal differentiation, spermatogenesis, and long-term memory formation, which indicates the importance of this family in ontogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Aguilar-Gurrieri, C., Larabi, A., Vinayachandran, V., et al., Structural evidence for Nap1-dependent H2A-H2B deposition and nucleosome assembly, EMBO J., 2016, vol. 2035, no. 13, pp. 1465–1482.

    Article  CAS  Google Scholar 

  2. Akishina, A.A., Vorontsova, J.E., Cherezov, R.O., et al., NAP family CG5017 chaperone pleiotropically regulates human AHR target genes expression in Drosophila testis, Int. J. Mol. Sci., 2019, vol. 20, no. 1, p. 118.

    Article  CAS  Google Scholar 

  3. Altman, R. and Kellogg, D., Control of mitotic events by Nap1 and the Gin4 kinase, J. Cell Biol., 1997, vol. 138, no. 1, pp. 119–130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Attia, M., Rachez, C., De Pauw, A., et al., Nap1l2 promotes histone acetylation activity during neuronal differentiation, Mol. Cell. Biol., 2007, vol. 27, no. 17, pp. 6093–6102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Attia, M., Förster, A., Rachez, C., et al., Interaction between nucleosome assembly protein 1-like family members, J. Mol. Biol., 2011, vol. 407, no. 5, pp. 647–660.

    Article  CAS  PubMed  Google Scholar 

  6. Attia, M., Rachez, C., Avner, P., et al., Nucleosome assembly proteins and their interacting proteins in neuronal differentiation, Arch. Biochem. Biophys., 2013, vol. 534, no. 1, pp. 20–26.

    Article  CAS  PubMed  Google Scholar 

  7. Barna, B., Gemes, K., Domoki, M., et al., Arabidopsis NAP-related proteins (NRPs) contribute to the coordination of plant growth, developmental rate, and age-related pathogen resistance under short days, Plant Sci., 2018, vol. 267, pp. 124–134.

    Article  CAS  PubMed  Google Scholar 

  8. Bogdan, S., Grewe, O., Strunk, M., et al., Sra-1 interacts with Kette and Wasp and is required for neuronal and bristle development in Drosophila, Development, 2004, vol. 131, no. 16, pp. 3981–3989.

    Article  CAS  PubMed  Google Scholar 

  9. Brennan, C.M. and Steitz, J.A., HuR and mRNA stability, Cell. Mol. Life Sci., 2001, vol. 58, no. 2, pp. 266–277.

    Article  CAS  PubMed  Google Scholar 

  10. Brown, J.B., Boley, N., Eisman, R., et al., Diversity and dynamics of the Drosophila transcriptome, Nature, 2014, vol. 512, no. 7515, pp. 393–399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Busbee, P.B., Rouse, M., Nagarkatti, M., et al., Use of natural AhR ligands as potential therapeutic modalities against inflammatory disorders, Nutr. Rev., 2013, vol. 71, no. 6, pp. 353–369.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Canela, N., Rodriguez-Vilarrupla, A., Estanyol., J.M., et al., The SET protein regulates G2/M transition by modulating cyclin B-cyclin-dependent kinase 1 activity, J. Biol. Chem., 2003, vol. 278, no. 2, pp. 1158–1164.

    Article  CAS  PubMed  Google Scholar 

  13. Chai, Z., Sarcevic, B., Mawson, A., et al., SET-related cell division autoantigen-1 (CDA1) arrests cell growth, J. Biol. Chem., 2001, vol. 276, no. 36, pp. 33665–33674.

    Article  CAS  PubMed  Google Scholar 

  14. Chang, L., Loranger, S.S., Mizzen, C., et al., Histones in transit: cytosolic histone complexes and diacetylation of H4 during nucleosome assembly in human cells, Biochemistry, 1997, vol. 36, no. 3, pp. 469–480.

    Article  CAS  PubMed  Google Scholar 

  15. Chen, X., D’Arcy, S., Radebaugh, C.A., et al., Histone chaperone Nap1 is a major regulator of histone H2A-H2B dynamics at the inducible GAL locus, Mol. Cell. Biol., 2016, vol. 36, no. 8, pp. 1287–1296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Compagnone, N.A., Zhang, P., Vigne, J.L., et al., Novel role for the nuclear phosphoprotein set in transcriptional activation of p450c17 and initiation of neurosteroidogenesis, Mol. Endocrinol., 2000, vol. 14, no. 6, pp. 875–888.

    Article  CAS  PubMed  Google Scholar 

  17. Das, C., Tyler, J.K., and Churchill, M.E., The histone shuffle: histone chaperones in an energetic dance, Trends Biochem. Sci., 2010, vol. 35, no. 9, pp. 476–489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dingwall, C. and Laskey, R.A., Nuclear targeting sequences—a consensus?, Trends Biochem. Sci., 1991, vol. 16, no. 12, pp. 478–481.

    Article  CAS  PubMed  Google Scholar 

  19. Doyen, C.M., Chalkley, G.E., Voets, O., et al., A testis-specific chaperone and the chromatin remodeler ISWI mediate repackaging of the paternal genome, Cell Rep., 2015, vol. 13, no. 7, pp. 1310–1318.

    Article  CAS  PubMed  Google Scholar 

  20. Dubnau, J., Chiang, A.S., Grady, L., et al., The staufen/pumilio pathway is involved in Drosophila long-term memory, Curr. Biol., 2003, vol. 13, no. 4, pp. 286–296.

    Article  CAS  PubMed  Google Scholar 

  21. Eitoku, M., Sato, L., Senda, T., et al., Histone chaperones: 30 years from isolation to elucidation of the mechanisms of nucleosome assembly and disassembly, Cell. Mol. Life Sci., 2008, vol. 65, no. 3, pp. 414–444.

    Article  CAS  PubMed  Google Scholar 

  22. Elsässer, S.J. and D’Arcy, S., Towards a mechanism for histone chaperones, Biochim. Biophys. Acta, 2012, vol. 1819, nos. 3–4, pp. 211–221.

    Article  CAS  Google Scholar 

  23. Fan, Z., Beresford, P.J., Oh, D.Y., et al., Tumor suppressor NM23–H1 is a granzyme A-activated DNase during CTL-mediated apoptosis, and the nucleosome assembly protein SET is its inhibitor, Cell, 2003, vol. 112, no. 5, pp. 659–672.

    Article  CAS  PubMed  Google Scholar 

  24. Fujii-Nakata, T., Ishimi, Y., Okuda, A., et al., Functional analysis of nucleosome assembly protein, NAP-1. The negatively charged COOH-terminal region is not necessary for the intrinsic assembly activity, J. Biol. Chem., 1992, vol. 267, no. 29, pp. 20980–20986.

    CAS  PubMed  Google Scholar 

  25. Galichet, A. and Gruissem, W., Developmentally controlled farnesylation modulates AtNAP1;1 function in cell proliferation and cell expansion during Arabidopsis leaf development, Plant Physiol., 2006, vol. 142, no. 4, pp. 1412–1426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gamble, M.J., Erdjument-Bromage, H., Tempst, P., et al., The histone chaperone TAF-I/SET/INHAT is required for transcription in vitro of chromatin templates, Mol. Cell. Biol., 2005, vol. 25, no. 2, pp. 797–807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gao, J., Zhu, Y., Zhou, W., et al., NAP1 family histone chaperones are required for somatic homologous recombination in Arabidopsis, Plant Cell, 2012, vol. 24, no. 4, pp. 1437–1447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hamilton, C.K., Verduzco-Gomez, A.R., Favetta, L.A., et al., Testis-specific protein Y-encoded copy number is correlated to its expression and the field fertility of Canadian Holstein bulls, Sex. Dev., 2012, vol. 6, no. 5, pp. 231–239.

    Article  CAS  PubMed  Google Scholar 

  29. Hammond, C.M., Strømme, C.B., Huang, H., et al., Histone chaperone networks shaping chromatin function, Nat. Rev. Mol. Cell Biol., 2017, vol. 18, no. 3, pp. 141–158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Harada, H., Nagai, H., Ezura, Y., et al., Down-regulation of a novel gene, DRLM, in human liver malignancy from 4q22 that encodes a NAP-like protein, Gene, 2002, vol. 296, nos. 1–2, pp. 171–177.

    Article  CAS  PubMed  Google Scholar 

  31. Haruki, H., Okuwaki, M., Miyagishi, M., et al., Involvement of template-activating factor I/SET in transcription of adenovirus early genes as a positive-acting factor, J. Virol., 2006, vol. 80, no. 2, pp. 794–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Heshmati, Y., Kharazi, S., Türköz, G., et al., The histone chaperone NAP1L3 is required for haematopoietic stem cell maintenance and differentiation, Sci. Rep., 2018, vol. 8, no. 1, p. 11202.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Higgins, J.M.G. and Herbert, M., Nucleosome assembly proteins get set to defeat the guardian of chromosome cohesion, PLoS Genet., 2013, vol. 9, no. 9. e1003829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hu, R.J., Lee, M.P., Johnson, L.A., et al., A novel human homologue of yeast nucleosome assembly protein, 65 kb centromeric to the p57KIP2 gene, is biallelically expressed in fetal and adult tissues, Hum. Mol. Genet., 1996, vol. 5, no. 11, pp. 1743–1748.

    Article  CAS  PubMed  Google Scholar 

  35. Ishimi, Y., Yasuda, H., Hirosumi, J., et al., A protein which facilitates assembly of nucleosome-like structures in vitro in mammalian cells, J. Biochem., 1983, vol. 94, no. 3, pp. 735–744.

    Article  CAS  PubMed  Google Scholar 

  36. Ishimi, Y., Kojima, M., Yamada, M., et al., Binding mode of nucleosome-assembly protein (AP-i) and histones, Eur. J. Biochem., 1987, vol. 162, no. 1, pp. 19–24.

    Article  CAS  PubMed  Google Scholar 

  37. Ishimi, Y. and Kikuchi, A., Identification and molecular cloning of yeast homolog of nucleosome assembly protein I which facilitates nucleosome assembly in vitro, J. Biol. Chem., 1991, vol. 266, no. 11, pp. 7025–7029.

    CAS  PubMed  Google Scholar 

  38. Ito, T., Bulger, M., Kobayashi, R., et al., Drosophila NAP-1 is a core histone chaperone that functions in ATP-facilitated assembly of regularly spaced nucleosomal arrays, Mol. Cell. Biol., 1996, vol. 16, no. 6, pp. 3112–3124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ito, T., Ikehara, T., Nakagawa, T., et al., P300-Mediated acetylation facilitates the transfer of histone H2A-H2B dimers from nucleosomes to a histone chaperone, Genes Dev., 2000, vol. 14, no. 15, pp. 1899–1907.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Jans, D.A. and Hübner, S., Regulation of protein transport to the nucleus: central role of phosphorylation, Physiol. Rev., 1996, vol. 76, no. 3, pp. 651–685.

    Article  CAS  PubMed  Google Scholar 

  41. Jantzen, H.M., Admon, A., Bell, S.P., et al., Nucleolar transcription factor hUBF contains a DNA-binding motif with homology to HMG proteins, Nature, 1990, vol. 344, no. 6269, pp. 830–836.

    Article  CAS  PubMed  Google Scholar 

  42. Kawase, H., Okuwaki, M., Miyaji, M., et al., NAP-I is a functional homologue of TAF-I that is required for replication and transcription of the adenovirus genome in a chromatin-like structure, Genes Cells, 1996, vol. 1, no. 12, pp. 1045–1056.

    Article  CAS  PubMed  Google Scholar 

  43. Kellogg, D.R. and Murray, A.W., NAP1 acts with Clb1 to perform mitotic functions and to suppress polar bud growth in budding yeast, J. Cell Biol., 1995, vol. 130, no. 3, pp. 675–685.

    Article  CAS  PubMed  Google Scholar 

  44. Kellogg, D.R., Kikuchi, A., Fujii-Nakata, T., et al., Members of the NAP/SET family of proteins interact specifically with B-type cyclins, J. Cell Biol., 1995, vol. 130, no. 3, pp. 661–673.

    Article  CAS  PubMed  Google Scholar 

  45. Kepert, J.F., Mazurkiewicz, J., Heuvelman, G.L., et al., NAP1 modulates binding of linker histone H1 to chromatin and induces an extended chromatin fiber conformation, J. Biol. Chem., 2005, vol. 280, no. 40, pp. 34063–34072.

    Article  CAS  PubMed  Google Scholar 

  46. Kido, T. and Lau, Y.C., The Y-linked proto-oncogene TSPY contributes to poor prognosis of the male hepatocellular carcinoma patients by promoting the pro-oncogenic and suppressing the anti-oncogenic gene expression, Cell Biosci., 2019, vol. 9, p. 22.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kimura, S., The Nap family proteins, CG5017/Hanabi and Nap1, are essential for Drosophila spermiogenesis, FEBS Lett., 2013, vol. 587, no. 7, pp. 922–929.

    Article  CAS  PubMed  Google Scholar 

  48. Krajewski, W.A., The intrinsic stability of H2B-ubiquitylated nucleosomes and their in vitro assembly/disassembly by histone chaperone NAP1, Biochim. Biophys. Acta. Gen. Subj., 2020, vol. 1864, no. 3, p. 129497.

    Article  CAS  PubMed  Google Scholar 

  49. Krick, R., Jakubiczka, S., and Arnemann, J., Expression, alternative splicing and haplotype analysis of transcribed testis specific protein (TSPY) genes, Gene, 2003, vol. 302, nos. 1–2, pp. 11–19.

    Article  CAS  PubMed  Google Scholar 

  50. Kuzin, B.A., Doszhanov, K.T., Simonova, O.B., et al., A new allele variant of ss a and its participation in regulating the proliferation of the stem elements of the leg and antenna imaginal disks in Drosophila melanogaster, Ontogenez, 1991, vol. 22, no. 2, pp. 212–216.

    CAS  PubMed  Google Scholar 

  51. Kuzin, B.A., Modestova, E.A., Vorontsova, Y.E., et al., Interaction of the ss and CG5017 genes in the regulation of morphogenesis of limbs in Drosophila melanogaster, Russ. J. Dev. Biol., 2010, vol. 41, no. 5, pp. 312–317.

    Article  CAS  Google Scholar 

  52. Kuzin, B.A., Nikitina, E.A., Cherezov, R.O., et al., Combination of hypomorphic mutations of the Drosophila homologues of aryl hydrocarbon receptor and nucleosome assembly protein family genes disrupts morphogenesis, memory and detoxification, PLoS One, 2014, vol. 9, no. 4. e94975.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Lankenau, S., Barnickel, T., Marhold, J., et al., Knockout targeting of the Drosophila nap1 gene and examination of DNA repair tracts in the recombination products, Genetics, 2003, vol. 163, no. 2, pp. 611–623.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Lapeyre, B., Bourbon, H., and Amalric, F., Nucleolin, the major nucleolar protein of growing eukaryotic cells: an unusual protein structure revealed by the nucleotide sequence, Proc. Natl. Acad. Sci. U. S. A., 1987, vol. 84, no. 6, pp. 1472–1476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Larigot, L., Juricek, L., Dairou, J., et al., AhR signaling pathways and regulatory functions, Biochim. Open, 2018, vol. 7, pp. 1–9.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Laskey, R.A., Honda, B.M., Mills, A.D., et al., Nucleosomes are assembled by an acidic protein which binds histones and transfers them to DNA, Nature, 1978, vol. 275, no. 5679, pp. 416–420.

    Article  CAS  PubMed  Google Scholar 

  57. Li, S., Li, J., Tian, J., et al., Characterization, tissue expression, and imprinting analysis of the porcine CDKN1C and NAP1L4 genes, J. Biomed. Biotechnol., 2012, vol. 2012, p. 946527.

    PubMed  PubMed Central  Google Scholar 

  58. von Lindern, M., van Baal, S., Wiegant, J., et al., Can, a putative oncogene associated with myeloid leukemogenesis, may be activated by fusion of its 3' half to different genes: characterization of the set gene, Mol. Cell. Biol., 1992, vol. 12, no. 8, pp. 3346–3355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Liu, Z., Zhu, Y., Gao, J., et al., Molecular and reverse genetic characterization of NUCLEOSOME ASSEMBLY PROTEIN1 (NAP1) genes unravels their function in transcription and nucleotide excision repair in Arabidopsis thaliana, Plant J., 2009, vol. 59, no. 1, pp. 27–38.

    Article  CAS  PubMed  Google Scholar 

  60. Liu, Y., Xu, L., Xie, C., et al., Structural insights into ceNAP1 chaperoning activity toward ceH2A-H2B, Structure, 2019, vol. 27, no. 12, pp. 1798–1810.

    Article  CAS  PubMed  Google Scholar 

  61. Luger, K., Mäder, A.W., Richmond, R.K., et al., Crystal structure of the nucleosome core particle at 2.8 A resolution, Nature, 1997, vol. 389, no. 6648, pp. 251–260.

    Article  CAS  PubMed  Google Scholar 

  62. Luo, J., Emanuele, M.J., Li, D., et al., A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene, Cell, 2009, vol. 137, no. 5, pp. 835–848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Machida, S., Takaku, M., Ikura, M., et al., Nap1 stimulates homologous recombination by rad51 and rad54 in higher-ordered chromatin containing histone h1, Sci. Rep., 2014, vol. 4, p. 4863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Marheineke, K. and Krude, T., Nucleosome assembly activity and intracellular localization of human CAF-1 changes during the cell division cycle, J. Biol. Chem., 1998, vol. 273, no. 24, pp. 15279–15286.

    Article  CAS  PubMed  Google Scholar 

  65. Mattiroli, F., D’Arcy, S., and Luger, K., The right place at the right time: chaperoning core histone variants, EMBO Rep., 2015, vol. 16, no. 11, pp. 1454–1466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mazurkiewicz, J., Kepert, J.F., and Rippe, K., On the mechanism of nucleosome assembly by histone chaperone NAP1, J. Biol. Chem., 2006, vol. 281, no. 24, pp. 16462–16472.

    Article  CAS  PubMed  Google Scholar 

  67. McBryant, S.J., Park, Y.J., Abernathy, S.M., et al., Preferential binding of the histone (H3-H4)2 tetramer by NAP1 is mediated by the amino-terminal histone tails, J. Biol. Chem., 2003, vol. 278, no. 45, pp. 44574–44583.

    Article  CAS  PubMed  Google Scholar 

  68. Miyaji-Yamaguchi, M., Kato, K., Nakano, R., et al., Involvement of nucleocytoplasmic shuttling of yeast Nap1 in mitotic progression, Mol. Cell. Biol., 2003, vol. 23, no. 18, pp. 6672–6684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mortensen, E.M., McDonald, H., Yates, J., 3rd, et al., Cell cycle-dependent assembly of a Gin4–septin complex, Mol. Biol. Cell, 2002, vol. 13, no. 6, pp. 2091–2105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mosammaparast, N., Еwart, C.S. and Pemberton, L.F., A role for nucleosome assembly protein 1 in the nuclear transport of histones h2a and h2b, EMBO J., 2002, vol. 21, no. 23, pp. 6527–6538.

    Article  Google Scholar 

  71. Moshkin, Y.M., Kan, T.W., Goodfellow, H., et al., Histone chaperones ASF1 and NAP1 differentially modulate removal of active histone marks by LID–RPD3 complexes during NOTCH silencing, Mol. Cell, 2009, vol. 35, no. 6, pp. 782–793.

    Article  CAS  PubMed  Google Scholar 

  72. Moshkin, Y.M., Doyen, C.M., Kan, T.W., et al., Histone chaperone NAP1 mediates sister chromatid resolution by counteracting protein phosphatase 2A, PLoS Genet., 2013, vol. 9, no. 9. e1003719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ohkuni, K., Shirahige, K., and Kikuchi, A., Genome-wide expression analysis of NAP1 in Saccharomyces cerevisiae, Biochem. Biophys. Res. Commun., 2003, vol. 306, no. 1, pp. 5–9.

    Article  CAS  PubMed  Google Scholar 

  74. Okuwaki, M., Kato, K., and Nagata, K., Functional characterization of human nucleosome assembly protein 1‑like proteins as histone chaperones, Genes Cells, 2010, vol. 15, no. 1, pp. 13–27.

    Article  CAS  PubMed  Google Scholar 

  75. Oram, S.W., Liu, X.X., Lee, T.L., et al., TSPY potentiates cell proliferation and tumorigenesis by promoting cell cycle progression in HeLa and NIH3T3 cells, BMC Cancer, 2006, vol. 6, p. 154.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Ozbun, L.L., You, L., Kiang, S., et al., Identification of differentially expressed nucleolar TGF-β1 target (DENTT) in human lung cancer cells that is a new member of the TSPY/SET/NAP-1 superfamily, Genomics, 2001, vol. 73, no. 2, pp. 179–193.

    Article  CAS  PubMed  Google Scholar 

  77. Park, Y.J. and Luger, K., The structure of nucleosome assembly protein 1, Proc. Natl. Acad. Sci. U. S. A., 2006, vol. 103, no. 5, pp. 1248–1253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Park, Y.J., Chodaparambil, J.V., Bao, Y., et al., Nucleosome assembly protein 1 exchanges histone H2A-H2B dimers and assists nucleosome sliding, J. Biol. Chem., 2005, vol. 280, no. 3, pp. 1817–1825.

    Article  CAS  PubMed  Google Scholar 

  79. Patel, F.B., Bernadskaya, Y.Y., Chen, E., et al., The WAVE/SCAR complex promotes polarized cell movements and actin enrichment in epithelia during C. elegans embryogenesis, Dev. Biol., 2008, vol. 324, no. 2, pp. 297–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Prawitt, D., Munroe, D.J., Pelletier, J., et al., Loss of heterozygosity at Identification of a NAP related gene in the Wilms’ tumor candidate 11p15 in malignant glioma, Am. J. Hum. Genet., 1996, vol. 59, p. A79.

    Google Scholar 

  81. Puffenberger, E.G., Hu-Lince, D., Parod, J.M., et al., Mapping of sudden infant death with dysgenesis of the testes syndrome (SIDDT) by a SNP genome scan and identification of TSPYL loss of function, Proc. Natl. Acad. Sci. U. S. A., 2004, vol. 101, no. 32, pp. 11689–11694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Qiao, H., Li, Y., Feng, C., et al., Nap1l1 controls embryonic neural progenitor cell proliferation and differentiation in the developing brain, Cell Rep., 2018, vol. 22, no. 9, pp. 2279–2293.

    Article  CAS  PubMed  Google Scholar 

  83. Rodriguez, P., Munroe, D., Prawitt, D., et al., Functional characterization of human nucleosome assembly protein-2 (NAP1L4) suggests a role as a histone chaperone, Genomics, 1997, vol. 44, no. 3, pp. 253–265.

    Article  CAS  PubMed  Google Scholar 

  84. Rodriguez, P., Pelletier, J., Price, G.B., et al., NAP-2: histone chaperone function and phosphorylation state through the cell cycle, J. Mol. Biol., 2000, vol. 298, no. 2, pp. 225–238.

    Article  CAS  PubMed  Google Scholar 

  85. Rodriguez, P., Ruiz, M.T., Price, G.B., et al., NAP-2 is part of multi-protein complexes in HeLa cells, J. Cell. Biochem., 2004, vol. 93, no. 2, pp. 398–408.

    Article  CAS  PubMed  Google Scholar 

  86. Rougeulle, C. and Avner, P., Cloning and characterization of a murine brain specific gene Bpx and its human homologue lying within the Xic candidate region, Hum. Mol. Genet., 1996, vol. 5, no. 1, pp. 41–49.

    Article  CAS  PubMed  Google Scholar 

  87. Sarkar, P., Zhang, N., Bhattacharyya, S., et al., Characterization of Caenorhabditis elegans nucleosome assembly protein 1 uncovers the role of acidic tails in histone binding, Biochemistry, 2019, vol. 58, no. 2, pp. 108–113.

    Article  CAS  PubMed  Google Scholar 

  88. Schmidt-Zachmann, M.S., Hügle-Dörr, B., and Franke, W.W., A constitutive nucleolar protein identified as a member of the nucleoplasmin family, EMBO J., 1987, vol. 6, no. 7, pp. 1881–1890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Schnieders, F., Dörk, T., Arnemann, J., et al., Testis-specific protein, Y-encoded (TSPY) expression in testicular tissues, Hum. Mol. Genet., 1996, vol. 5, no. 11, pp. 1801–1807.

    Article  CAS  PubMed  Google Scholar 

  90. Schröter, R.H., Lier, S., Holz, A., et al., Kette and blown fuse interact genetically during the second fusion step of myogenesis in Drosophila, Development, 2004, vol. 131, no. 18, pp. 4501–4509.

    Article  PubMed  CAS  Google Scholar 

  91. Schwab, M.S. and Dreyer, C., Protein phosphorylation sites regulate the function of the bipartite NLS of nucleolin, Eur. J. Cell Biol., 1997, vol. 73, no. 4, pp. 287–297.

    CAS  PubMed  Google Scholar 

  92. Shen, H.H., Huang, A.M., Hoheisel, J., et al., Identification and characterization of a SET/NAP protein encoded by a brain-specific gene, MB20, Genomics, 2001, vol. 71, no. 1, pp. 21–33.

    Article  CAS  PubMed  Google Scholar 

  93. Shen, Y., Yan, Y., Liu, Y., et al., A significant effect of the TSPY1 copy number on spermatogenesis efficiency and the phenotypic expression of the gr/gr deletion, Hum. Mol. Genet., 2013, vol. 22, no. 8, pp. 1679–1695.

    Article  CAS  PubMed  Google Scholar 

  94. Shikama, N., Chan, H.M., Krstic-Demonacos, M., et al., Functional interaction between nucleosome assembly proteins and p300/CREB-binding protein family coactivators, Mol. Cell. Biol., 2000, vol. 20, no. 23, pp. 8933–8943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Shimizu, Y., Akashi, T., Okuda, A., et al., NBP1 (Nap1 binding protein 1), an essential gene for G2/M transition of Saccharomyces cerevisiae, encodes a protein of distinct subnuclear localization, Gene, 2000, vol. 246, nos. 1–2, pp. 395–404.

    Article  CAS  PubMed  Google Scholar 

  96. Shintomi, K., Takahashi, T.S., and Hirano, T., Reconstitution of mitotic chromatids with a minimum set of purified factors, Nat. Cell Biol., 2015, vol. 17, no. 8, pp. 1014–1023.

    Article  CAS  PubMed  Google Scholar 

  97. Simon, H.U., Mills, G.B., Kozlowski, M., et al., Molecular characterization of hNRP, a cDNA encoding a human nucleosome-assembly-protein-I-related gene product involved in the induction of cell proliferation, Biochem. J., 1994, vol. 297, pp. 389–397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Smith, R.J., Dean, W., Konfortova, G., et al., Identification of novel imprinted genes in a genome-wide screen for maternal methylation, Genome Res., 2003, vol. 13, no. 4, pp. 558–569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Steer, W.M., Abu-Daya, A., Brickwood, S.J., et al., Xenopus nucleosome assembly protein becomes tissue-restricted during development and can alter the expression of specific genes, Mech. Dev., 2003, vol. 120, no. 9, pp. 1045–1057.

    Article  CAS  PubMed  Google Scholar 

  100. Stein, A., Whitlock, J.P., and Bina, M., Acidic polypeptides can assemble both histones and chromatin in vitro at physiological ionic strength, Proc. Natl. Acad. Sci. U. S. A., 1979, vol. 76, no. 10, pp. 5000–5004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Tachiwana, H., Miya, Y., Shono, N., et al., Nap1 regulates proper CENP-B binding to nucleosomes, Nucleic Acids Res., 2013, vol. 41, no. 5, pp. 2869–2880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Tanaka, T., Hozumi, Y., Martelli, A.M., et al., Nucleosome assembly proteins NAP1L1 and NAP1L4 modulate p53 acetylation to regulate cell fate, Biochim. Biophys. Acta. Mol. Cell Res., 2019, vol. 1866, no. 5, p. 118560.

    CAS  Google Scholar 

  103. Valieva, M.E., Feofanov, A.V., and Studitsky, V.M., Histone chaperones: variety and functions, Moscow Univ. Biol. Sci. Bull., 2016, vol. 71, pp. 165–169.

    Article  Google Scholar 

  104. Vogel, T., Dittrich, O., Mehraein, Y., et al., Murine and human TSPYL genes: novel members of the TSPY-SET-NAP1L1 family, Cytogenet. Cell Genet., 1998, vol. 81, nos. 3–4, pp. 265–270.

    Article  CAS  PubMed  Google Scholar 

  105. Vorontsova, Y.E., Cherezov, R.O., Zatsepina, O.G., et al., Gene expression modulation is an evolutionary resource of adaptive alterations in the morphogenesis of insect limbs, Biol. Bull. Russ. Acad. Sci., 2012, vol. 39, pp. 186–193.

    Article  CAS  Google Scholar 

  106. Watanabe, T.K., Fujiwara, T., Nakamura, Y., et al., Cloning, expression pattern and mapping to Xq of NAP1L3, a gene encoding a peptide homologous to human and yeast nucleosome assembly proteins, Cytogenet. Cell Genetics, 1996, vol. 74, no. 4, pp. 281–285.

    Article  CAS  Google Scholar 

  107. Wen, L., Huang, J.K., Johnson, B.H., et al., A human placental cDNA clone that encodes nonhistone chromosomal protein HMG-1, Nucleic Acids Res., 1989, vol. 17, no. 3, pp. 1197–1214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zhang, Q., Giebler, H.A., Isaacson, M.K., et al., Eviction of linker histone H1 by NAP-family histone chaperones enhances activated transcription, Epigenetics Chromatin, 2015, vol. 8, p. 30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Zhou, W., Zhu, Y., Dong, A., et al., Histone H2A/H2B chaperones: from molecules to chromatin-based functions in plant growth and development, Plant J., 2015, vol. 83, no. 1, pp. 78–95.

    Article  CAS  PubMed  Google Scholar 

  110. Zhou, W., Gao, J., Ma, J., et al., Distinct roles of the histone chaperones NAP1 and NRP and the chromatin-remodeling factor INO80 in somatic homologous recombination in Arabidopsis thaliana, Plant J., 2016, vol. 88, no. 3, pp. 397–410.

    Article  CAS  PubMed  Google Scholar 

  111. Zhu, Y., Rong, L., Luo, Q., et al., The histone chaperone NRP1 interacts with WEREWOLF to activate GLABRA2 in Arabidopsis root hair development, Plant Cell, 2017, vol. 29, no. 2, pp. 260–276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The research was funded by the Russian Foundation for Basic Research, project number 20-04-00272а, and was performed within the framework of State Assignment of Koltzov Institute of Developmental Biology (Russian Academy of Sciences), year 2020, no. 0108-2019-0001, Molecular and Genetic Mechanisms of the Regulation of Cell Differentiation and Morphogenesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. B. Simonova.

Ethics declarations

The authors declare that they have no conflict of interest.

This paper does not contain any studies involving animals or human participants performed by the authors.

AUTHOR CONTRIBUTIONS

A.A. Akishina and E.E. Kuvaeva equally contributed: they analyzed the world literature and wrote the main text of the article. Yu.E. Vorontsova participated in editing and discussion the article’s text. O.B. Simonova initiated the writing of the review and edited the text.

Additional information

Translated by A. Ermakov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akishina, A.A., Kuvaeva, E.E., Vorontsova, Y.E. et al. NAP Family Histone Chaperones: Characterization and Role in Ontogenesis. Russ J Dev Biol 51, 343–355 (2020). https://doi.org/10.1134/S1062360420060028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062360420060028

Keywords:

Navigation