Skip to main content
Log in

Diagnostics of Pulsed Laser Action on Wide-Gap Materials Using Thermoluminescent Dosimetry

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

The emission spectra of wide-gap materials based on SiO2, Al2O3, LiF, and AlN were studied by the laser induced breakdown spectroscopy method under the action of a single neodymium laser pulse at the fundamental harmonic of 1.064 μm, pulse duration 14 ns, surface energy density 13 J cm–2, and spot diameter on the irradiated surface ~1.5 mm. Interest in the study of these materials is due to the fact that they are used as detectors for determining absorbed doses in thermoluminescent dosimetry of ionizing and ultraviolet radiation. TLD-K (SiO2) detectors are not sensitive to light and are used to determine the dose of ionizing exposure. Detectors TLD-500 (Al2O3) and AlN along with sensitivity to ionizing radiation have a strong sensitivity to ultraviolet radiation. The use of different types of detectors makes it possible to estimate the contributions of the laser pulse energy conversion in the sample material into ionizing radiation and ultraviolet light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Abramov, V.A., Kogan, V.I., and Lisitsa, V.S., in Voprosy teorii plazmy (Plasma Theory Issues), Leontovich, M.A. and Kadomtsev, B.B., Eds., Moscow: Energoizdat, 1982, no. 12, p. 114.

  2. Zeldovich, Ya.B. and Raiser, Yu.P., Fizika udarnykh voln i vysokotemperaturnykh yavlenii (Physics of Shock Waves and High-Temperature Phenomena), Moscow: Nauka, 1966, 2nd ed.

  3. Ferioli, F. and Buckley, S.G., Combust. Flame, 2006, vol. 144, no. 3, p. 435. https://doi.org/10.1016/j.combustflame.2005.08.005

    Article  CAS  ADS  Google Scholar 

  4. Portnov, A., Rosenwaks, S., and Bar, I., Appl. Opt., 2003, vol. 42, no. 15, p. 2835. https://doi.org/10.1364/AO.42.002835

    Article  CAS  PubMed  ADS  Google Scholar 

  5. Tran, M., Sun, Q., Smith, B.W., and Winefordner, J.D., J. Anal. At. Spectrom., 2001, vol. 16, no. 6, p. 628. https://doi.org/10.1039/B009905H

    Article  CAS  Google Scholar 

  6. Hu, Z., Zhang, D., Wang, W., Chen, F., Xu, Y., Nie, J., Chu, Y., and Guo, L., TrAC, Trends Anal. Chem., 2022, vol. 152, p. 116618. https://doi.org/10.1016/j.trac.2022.116618

    Article  CAS  Google Scholar 

  7. Li, W., Lu, J., Dong, M., Lu, S., Yu, J., Li, S., Huang, J., and Liu, J., Energy Fuels, 2018, vol. 32, no. 1, p. 24. https://doi.org/10.1021/acs.energyfuels.7b01718

    Article  CAS  Google Scholar 

  8. De Lucia, F.C., Harmon, R.S., McNesby, K.L., Winkel, R.J., and Miziolek, A.W., Appl. Opt., 2003, vol. 42, no. 30, p. 6148. https://doi.org/10.1364/AO.42.006148

    Article  CAS  PubMed  ADS  Google Scholar 

  9. Vadillo, J.M., García, P.L., Palanco, S., Romero, D., Baena, J.M., and Laserna, J.J., Anal. Bioanal. Chem., 2003, vol. 375, p. 1144. https://doi.org/10.1007/s00216-003-1820-6

    Article  CAS  PubMed  Google Scholar 

  10. Afgan, M.S., Hou, Z., Song, W., Liu, J., Song, Y., Gu, W., and Wang, Z., Chemosensors, 2022, vol. 10, no. 9, p. 350. https://doi.org/10.3390/chemosensors10090350

    Article  CAS  Google Scholar 

  11. Legnaioli, S., Lorenzetti, G., Pardini, L., Cavalcanti, G.H., and Palleschi, V., in Laser-Induced Breakdown Spectroscopy, Musazzi, S. and Perini, U., Eds., Berlin: Springer, 2014, p. 169. https://doi.org/10.1007/978-3-642-45085-3_7

  12. Aragón, C. and Aguilera, J.A., Anal. Chim. Acta, 2018, vol. 1009, p. 12. https://doi.org/10.1016/j.aca.2018.01.019

    Article  CAS  PubMed  Google Scholar 

  13. Choi, J.H., Lee, H.J., Lee, S.H., In, J.H, and Jeong, S., Thin Solid Films, 2018, vol. 660, p. 314. https://doi.org/10.1016/j.tsf.2018.06.034

    Article  CAS  ADS  Google Scholar 

  14. Choi, J.H., Moon, Y., Lee, S.H., In, J.H., and Jeong, S., Int. J. Precis. Eng. Manuf.-Green Technol., 2016, vol. 3, p. 167. https://doi.org/10.1007/s40684-016-0021-7

    Article  Google Scholar 

  15. Legnaioli, S., Campanella, B., Poggialini, F., Pagnotta, S., Harith, M.A., Abdel-Salam, Z.A., and Palleschi, V., Anal. Methods, 2020, vol. 12, no. 8, p. 1014. https://doi.org/10.1039/C9AY02728A

    Article  Google Scholar 

  16. Aberkane, S.M., Safi, A., Botto, A., Campanella, B., Legnaioli, S., Poggialini F., Raneri S., Rezaei F., and Palleschi V., Appl. Sci., 2020, vol. 10, no. 14, p. 4973. https://doi.org/10.3390/app10144973

    Article  CAS  Google Scholar 

  17. Laser Induced Breakdown Spectroscopy (LIBS): Fundamentals and Applications, Miziolek, A.W., Palleschik, V., and Schechter, I., Eds., Cambridge: Cambridge Univ. Press, 2006. https://doi.org/10.1017/cbo9780511541261

  18. Bauer, A.J.R. and Buckley, S.G., Appl. Spectrosc., 2017, vol. 71, no. 4, p. 553. https://doi.org/10.1177/0003702817691527

    Article  CAS  PubMed  ADS  Google Scholar 

  19. Aluker, N.L., Suzdaltseva, J.M., Dulepova, A.C., and Herrmann, M., Instrum. Exp. Tech., 2016, vol. 59, no. 5, p. 733. https://doi.org/10.1134/S002044121605002X

    Article  CAS  Google Scholar 

  20. Aluker, N.L., Artamonov, A.S., and Herrmann, M., Instrum. Exp. Tech., 2021, vol. 64, no. 3, p. 437. https://doi.org/10.1134/S0020441221020214

    Article  CAS  Google Scholar 

  21. Aluker, N.L., Artamonov, A.S., Herrmann, M., Gimadova, T.I., and Zverev, A.S., Instrum. Exp. Tech., 2021, vol. 64, no. 6, p. 860. https://doi.org/10.1134/S0020441221050158

    Article  CAS  Google Scholar 

  22. Aluker, N.L. and Artamonov, A.S., Bull. Russ. Acad. Sci.: Phys., 2022, vol. 86, no. 7, p. 765. https://doi.org/10.3103/S1062873822070061

    Article  CAS  Google Scholar 

  23. Zakharov, V.S. and Novikov, V.G., Math. Models Comput. Simul., 2009, vol. 1, no. 5, p. 533. https://doi.org/10.1134/S2070048209050019

    Article  Google Scholar 

  24. Jolivet, L., Leprince, M., Moncayo, S., Sorbier, L., Lienemann, C.-P., and Motto-Ros, V., Spectrochim. Acta, Part B, 2019, vol. 151, p. 41. https://doi.org/10.1016/j.sab.2018.11.008

    Article  CAS  ADS  Google Scholar 

  25. Software package and database THERMOS. http://keldysh.ru/thermos. Accessed September 17, 2022.

  26. National Institute of Standards and Technology Atomic Spectra Database (version 4.0). http://physics.nist.gov/asd. Accessed September 17, 2022.

  27. National Institute for Fusion Science Atomica and Molecular Numerical Databases. http://dbshino.nifs.ac.jp. Accessed September 18, 2022.

  28. National Institute of Standards and Technology Atomic Spectra Database Lines Holdings. http://physics.nist.gov/cgi-bin/ASD/lines_pt.pl. Accessed September 19, 2022.

Download references

ACKNOWLEDGMENTS

The experiments were conducted using the equipment of the Center for Collective Use of the Federal Research Center of Coal and Coal-Chemistry, Siberian Branch, Russian Academy of Sciences.

Funding

The work was carried out within the framework of the state task of the Federal Research Center of Coal and Coal-Chemistry, Siberian Branch, Russian Academy of Sciences, project no. 121031500513-4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. L. Aluker.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aluker, N.L., Artamonovov, A.S., Nurmukhametov, D.R. et al. Diagnostics of Pulsed Laser Action on Wide-Gap Materials Using Thermoluminescent Dosimetry. Bull. Russ. Acad. Sci. Phys. 87 (Suppl 1), S93–S102 (2023). https://doi.org/10.1134/S1062873823704464

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062873823704464

Keywords:

Navigation