Skip to main content
Log in

Laser-Induced Desorption Spectroscopy with an Inductively Coupled Plasma Source—Examination of Technique Applicability for Detection of Retained Hydrogen

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

We report the implementation of a method for non-destructive remote diagnostics of the content of gas impurities retained in a material surface layer. The technique is based on the laser-induced heating of a surface layer and associated desorption of gas species in the presence of background inductively coupled plasma (ICP). The analysis of released gas species is made by optical emission spectroscopy (OES). The procedure of optimizing the signal efficiency by changing the spectrometer observation path with respect to the laser beam and the delay of spectrum acquisition is discussed. The applicability of laser-induced desorption spectroscopy (LIDS) was examined by studying the release of hydrogen from a Ti-V test sample exposed to Nd:glass laser pulses (λ = 1064 nm, duration 0.5 ms, energy 1–14 J), in a background argon plasma, by measuring the intensity of Balmer spectral lines. The demonstrated dependence of Hα intensity on the laser pulse energy enables implementing the LIDS technique for diagnostics of retained hydrogen. The lower limit of the laser pulse energy range suitable for diagnostics is associated with spectrometer sensitivity. The higher limit is governed by distortion of plasma conditions, which is detected as a deviation in argon emission intensity from constant value when the laser pulse energy exceeds 6 J.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Zlobinski, M., Philipps, V., Schweer, B., Huber, A., Brezinsek, S., Schulz, Ch., Möller, S., Samm, U., and the TEXTOR Team, Fusion Eng. Des., 2011, vol. 86, p. 1332. https://doi.org/10.1016/j.fusengdes.2011.02.030

    Article  Google Scholar 

  2. Zlobinski, M., Philipps, V., Schweer, B., Huber, A., Reinhart, M., Möller, S., Sergienko, G., Samm, U., ’t Hoen, M.H.J. Manhard, A., Schmid, K., and the TEXTOR Team, J. Nucl. Mater., 2013, vol. 438, p. S1155. https://doi.org/10.1016/j.jnucmat.2013.01.255

    Article  Google Scholar 

  3. Yu, J.H., Simmonds, M., Baldwin, M., and Doerner, R.P., Nucl. Mater. Energy, 2017, vol. 12, p. 749. https://doi.org/10.1016/j.nme.2016.10.017

    Article  Google Scholar 

  4. Yu, J.H., Baldwin, M.J., Simmonds, M.J., and Založnik, A., Rev. Sci. Instrum., 2019, vol. 90, p. 073502. https://doi.org/10.1063/1.5100162

    Article  ADS  Google Scholar 

  5. Efimov, N.E., Sinelnikov, D.N., Bulgadaryan, D.G., Gasparyan, Yu.M., Vovchenko, E.D., and Krat, S.A., Bull. Russ. Acad. Sci.: Phys., 2022, vol. 86, p. 532. https://doi.org/10.3103/S1062873822050057

    Article  Google Scholar 

  6. Mukhin, E.E., Kuteev, B.V., Razdobarin, G.T., and Tolstyakov, S.Yu., Instrum. Exp. Tech., 2006, vol. 49, p. 280. https://doi.org/10.1134/S0020441206020217

    Article  Google Scholar 

  7. Gasparyan, Yu., Bulgadaryan, D., Efimov, N., Efimov, V., Krat, S., Popova, M., Sinelnikov, D., Vovchenko, E., Dmitriev, A., Elets, D., Mukhin, E., Razdobarin, A., Minaev, V., Novokhatsky, A., Sakharov, N., and Varfolomeev, V., Fusion Eng. Des., 2021, vol. 172, p. 112882. https://doi.org/10.1016/j.fusengdes.2021.112882

    Article  Google Scholar 

  8. Berlin, E.V., Grigoriev, V.Yu., and Seidman, L.A., Induktivnye istochniki vysokoplotnoi plazmy i ikh tekhnologicheskie primeneniya (Inductive Sources of High-Density Plasma and Their Technological Applications), Moscow: Tekhnosfera, 2018.

  9. Meshcheryakova, E.A., Kaziev, A.V., Zibrov, M.S., Stepanova, T.V., Berdnikova, M.M., Kharkov, M.M., and Pisarev, A.A., Bull. Russ. Acad. Sci.: Phys., 2016, vol. 80, p. 175. https://doi.org/10.3103/S1062873816020192

    Article  Google Scholar 

  10. Kolodko, D.V., Ageychenkov, D.G., Kaziev, A.V., Leonova, K.A., Kharkov, M.M., and Tumarkin, A.V., J. Instrum., 2019, vol. 14 P10005. https://doi.org/10.1088/1748-0221/14/10/P10005

    Article  Google Scholar 

  11. Efimov, N.E., Sinelnikov, D.N., Grishaev, M.V., Gasparyan, Yu.M., Efimov, V.S., and Krat, S.A., Phys. At. Nucl., 2023, vol. 86, p. 2173.https://doi.org/10.1134/S1063778823100137

  12. Belkov, M.V., Borisevich, D.A., Katsalap, K.Yu., and Khodasevich, M.A., Opt. Spectrosc., 2022, vol. 130, p. 488. https://doi.org/10.1134/S0030400X22100010

    Article  ADS  Google Scholar 

  13. Hussain, A., Xun, G., Asghar, H., Azam, M., Ain, Q.-T., and Nawaz, Z., Opt. Spectrosc., 2021, vol. 129, p. 452. https://doi.org/10.1134/S0030400X21040068

    Article  ADS  Google Scholar 

  14. Lebedev, V.F., Pavlov, K.V., Fedina, M.A., and Fedin, A.V., Bull. Russ. Acad. Sci.: Phys., 2020, vol. 84, p. 336. https://doi.org/10.3103/S1062873820030144

    Article  Google Scholar 

Download references

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation (project no. 0723-2020-0043). The work of D.V. Kolodko in the Kotelnikov Institute of Radio Engineering and Electronics of the Russian Academy of Sciences, Fryazino Branch, was carried out within the framework of the state task.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kaziev.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rykunov, G.I., Kolodko, D.V., Alieva, A.I. et al. Laser-Induced Desorption Spectroscopy with an Inductively Coupled Plasma Source—Examination of Technique Applicability for Detection of Retained Hydrogen. Bull. Russ. Acad. Sci. Phys. 88, 651–655 (2024). https://doi.org/10.1134/S1062873823706256

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062873823706256

Keywords:

Navigation