Skip to main content
Log in

Polysaccharides from Marine Algae in Modern Technologies of Regenerative Medicine

  • REVIEW
  • Published:
Russian Journal of Marine Biology Aims and scope Submit manuscript

Abstract

The present review considers the physicochemical and biological properties of polysaccharides (PSs) obtained from marine algae (alginates and fucoidans from brown algae; carrageenans from red algae; and ulvans from green algae). These PSs are used in the latest technologies of regenerative medicine (tissue engineering, modulation of drug delivery system, and design of wound dressing materials). Special attention is paid to the ability of PS to form hydrogels, as hydrogel dressings meet the basic requirements for a perfect wound dressing. This review discusses the current trends in the development of a new generation of PS-based materials for creation of drug delivery systems and various tissue-engineering scaffolds; this approach allows one to create human-specific tissues and to develop target-oriented and personalized regenerative medicine products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Akiyode, O. and Boateng, J., Composite biopolymer-based wafer dressings loaded with microbial biosurfactants for potential application in chronic wounds, Polymers, 2018, vol. 10, no. 8, art. ID 918. https://doi.org/10.3390/polym10080918

    Article  CAS  PubMed Central  Google Scholar 

  2. Alves, A., Duarte, A.R.C., Mano, J.F, et al., PDLLA enriched with ulvan particles as a novel 3D porous scaffold targeted for bone engineering, J. Supercrit. Fluids, 2012, vol. 65, pp. 32–38.

    Article  CAS  Google Scholar 

  3. Alves, A., Pinho, E.D., Neves, N.M., et al., Processing ulvan into 2D structures: Cross-linked ulvan membranes as new biomaterials for drug delivery applications, Int. J. Pharm., 2012, vol. 426, pp. 76–81.

    Article  CAS  PubMed  Google Scholar 

  4. Alves, A., Sousa, R.A., and Reis, R.L., Processing of degradable ulvan 3D porous structures for biomedical applications, J. Biomed. Mater. Res., Part A, 2013, vol. 101A, pp. 998–1006.

    Article  CAS  Google Scholar 

  5. Andreu, V., Mendoza, G., Arruebo, M., and Irusta, S., Smart dressings based on nanostructured fibers containing natural origin antimicrobial, anti-inflammatory, and regenerative compounds, Materials, 2015, vol. 8, pp. 5154–5193.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Annabi, N., Rana, D., Sani, S.E., et al., Engineering a sprayable and elastic hydrogel adhesive with antimicrobial properties for wound healing, Biomaterials, 2017, vol. 139, pp. 229–243.

    Article  CAS  PubMed  Google Scholar 

  7. Axpe, E. and Oyen, M.L., Applications of alginate-based bioinks in 3D bioprinting, Int. J. Mol. Sci., 2016, vol. 17, art. ID 1976. https://doi.org/10.3390/ijms17121976

    Article  CAS  PubMed Central  Google Scholar 

  8. Bakarich, S.E., Balding, P., Gorkin, R. III, et al., Printed ionic-covalent entanglement hydrogels from carrageenan and an epoxy amine, RSC Adv., 2014, vol. 4, no. 72, pp. 38088–38092.

    Article  CAS  Google Scholar 

  9. Barros, A.A.A., Alves, A., Nunes, C., et al., Carboxymethylation of ulvan and chitosan and their use as polymeric components of bone cements, Acta Biomater., 2013, vol. 9, pp. 9086–9097.

    Article  CAS  PubMed  Google Scholar 

  10. Bilal, M. and Iqbal, H.M.N., Marine seaweed polysaccharides-based engineered cues for the modern biomedical sector, Mar. Drugs, 2020, vol. 18, no. 1, art. ID 7. https://doi.org/10.3390/md18010007

    Article  CAS  Google Scholar 

  11. Boateng, J., Burgos-Amador, R., Okeke, O., and Pawar, H., Composite alginate and gelatin based bio-polymeric wafers containing silver sulfadiazine for wound healing, Int. J. Biol. Macromol., 2015, vol. 79, pp. 63–71.

    Article  CAS  PubMed  Google Scholar 

  12. Boateng, J. and Catanzano, O., Advanced therapeutic dressings for effective wound healing—A review, J. Pharm. Sci., 2015, vol. 104, pp. 3653–3680.

    Article  CAS  PubMed  Google Scholar 

  13. Boateng, J.S., Pawar, H.V., and Tetteh, J., Polyox and carrageenan based composite film dressing containing anti-microbial and anti-inflammatory drugs for effective wound healing, Int. J. Pharm., 2013, vol. 441, pp. 181–191.

    Article  CAS  PubMed  Google Scholar 

  14. Cardoso, M.J., Costa, R.R., and Mano, J.F., Marine origin polysaccharides in drug delivery systems, Mar. Drugs, 2016, vol. 14, art. ID 34. https://doi.org/10.3390/md14020034

    Article  CAS  PubMed Central  Google Scholar 

  15. Li, C., Li, C., Liu, Z., et al., Enhancement in bioavailability of ketorolac tromethamine via intranasal in situ hydrogel based on poloxamer 407 and carrageenan, Int. J. Pharm., 2014, vol. 474, pp. 123–133.

    Article  CAS  PubMed  Google Scholar 

  16. Chimene, D., Lennox, K.K., Kaunas, R.R., and Gaharwar, A.K., Advanced bioinks for 3D printing: A materials science perspective, Ann. Biomed. Eng., 2016, vol. 44, pp. 2090–2102.

    Article  PubMed  Google Scholar 

  17. Ching, S.H., Bansal, N., and Bhandari, B., Alginate gel particles—A review of production techniques and physical properties, Crit. Rev. Food Sci. Nutr., 2017, vol. 57, pp. 1133–1152.

    Article  CAS  PubMed  Google Scholar 

  18. Citkowska, A., Szekalska, M., and Winnicka, K., Possibilities of fucoidan utilization in the development of pharmaceutical dosage forms, Mar. Drugs, 2019, vol. 17, no. 8, art. ID 458. https://doi.org/10.3390/md17080458

    Article  CAS  PubMed Central  Google Scholar 

  19. Cunha, L. and Grenha, A., Sulfated seaweed polysaccharides as multifunctional materials in drug delivery applications, Mar. Drugs, 2016, vol. 14, no. 3, art. ID 42. https://doi.org/10.3390/md14030042

    Article  CAS  PubMed Central  Google Scholar 

  20. Dash, M., Samala, S.K., Morelli, A., et al., Ulvan-chitosan polyelectrolyte complexes as matrices for enzyme induced biomimetic mineralization, Carbohydr. Polym., 2018, vol. 182, pp. 254–264.

    Article  CAS  PubMed  Google Scholar 

  21. Dhivya, S., Padma, V.V., and Santhini, E., Wound dressings – a review, Biomedicine (Taipei), 2015, vol. 5, no. 4, pp. 24–28. https://doi.org/10.7603/s40681-015-0022-9

    Article  Google Scholar 

  22. Feki, A., Bardaa, S., Hajji, S., et al., Falkenbergia rufolanosa polysaccharide – Poly(vinyl alcohol) composite films: A promising wound healing agent against dermal laser burns in rats, Int. J. Biol. Macromol., 2020, vol. 144, pp. 954–966.

    Article  CAS  PubMed  Google Scholar 

  23. Gaharwar, A.K., Peppas, N.A., and Khademhosseini, A., Nanocomposite hydrogels for biomedical applications, Biotechnol. Bioeng., 2014, vol. 111, no. 3, pp. 441–453. https://doi.org/10.1016/j.ijbiomac.2019.09.173

    Article  CAS  PubMed  Google Scholar 

  24. Goonoo, N., Khanbabaee, B., Steuber, M., et al., κ‑Carrageenan enhances the biomineralization and osteogenic differentiation of electrospun polyhydroxybutyrate and polyhydroxybutyrate valerate fibers, Biomacromolecules, 2017, vol. 18, no. 5, pp. 1563–1573.

    Article  CAS  PubMed  Google Scholar 

  25. Gowda, D.V., Fredric, S., Srivastava, A., and Osmani, R.A., Design and development of antimicrobial wafers for chronic wound healing, Pharm. Lett., 2016, vol. 8, pp. 70–79.

    Google Scholar 

  26. Hajiali, H., Summa, M., Russo, D., et al., Alginate–lavender nanofibers with antibacterial and anti-inflammatory activity to effectively promote burn healing, J. Mater. Chem. B, 2016, vol. 4, pp. 1686–1695.

    Article  CAS  PubMed  Google Scholar 

  27. Hezaveh, H. and Muhamad, I.I., Modification and swelling kinetic study of kappa-carrageenan-based hydrogel for controlled release study, J. Taiwan Inst. Chem. Eng., 2013, vol. 44, no. 2, pp. 182–191.

    Article  CAS  Google Scholar 

  28. Hu, C., Gong, R.H., and Zhou, F.L., Electrospun sodium alginate/polyethylene oxide fibers and nanocoated yarns, Int. J. Polym. Sci., 2015, vol. 2015, pp. 1–12.

    Google Scholar 

  29. Jaballi, I., Sallem, I., Feki, A., et al., Polysaccharide from a Tunisian red seaweed Chondrus canaliculatus: Structural characteristics, antioxidant activity and in vivo hemato-nephroprotective properties on maneb induced toxicity, Int. J. Biol. Macromol., 2019, vol. 123, pp. 1267–1277.

    Article  CAS  PubMed  Google Scholar 

  30. Jovic, T.H., Kungwengwe, G., Mills, A.C., and Whitaker, I.S., Plant-derived biomaterials: A review of 3D bioprinting and biomedical applications, Front. Mech. Eng., 2019, vol. 5, art. ID 19. https://doi.org/10.3389/fmech.2019.00019

    Article  Google Scholar 

  31. Kanno, K., Akiyoshi, K., Nakatsuka, T., et al., Biocompatible hydrogel from a green tide-forming chlorophyta, J. Sustainable Dev., 2012, vol. 5, pp. 38–45.

    Article  Google Scholar 

  32. Kim, M.H., Lee, Y.W., Jung, W.-K., et al., Enhanced rheological behaviors of alginate hydrogels with carrageenan for extrusion-based bioprinting, J. Mech. Behav. Biomed. Mater., 2019, vol. 98, pp. 187–194.

    Article  CAS  PubMed  Google Scholar 

  33. Kopel, M., Helbert, W., Belnik, Y., et al., New family of ulvan lyases identified in three isolates from the Alteromonadales order, J. Biol. Chem., 2016, vol. 291, no. 11, pp. 5871–5878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lahaye, M. and Robic, A., Structure and functional properties of ulvan, a polysaccharide from green seaweeds, Biomacromolecules, 2007, vol. 8, no. 6, pp. 1765–1774.

    Article  CAS  PubMed  Google Scholar 

  35. Li, J., Yang, B., Qian, Y., et al., Iota-carrageenan/chitosan/gelatin scaffold for the osteogenic differentiation of adipose-derived MSCs in vitro, J. Biomed. Mater. Res., Part B, 2015, vol. 103, no. 7, pp. 1498–1510.

    CAS  Google Scholar 

  36. Liang, X., Wang, X., Xu, Q., et al., Rubbery chitosan/carrageenan hydrogels constructed through an electroneutrality system and their potential application as cartilage scaffolds, Biomacromolecules, 2018, vol. 19, no. 2, pp. 340–352.

    Article  CAS  PubMed  Google Scholar 

  37. Lokhande, G., Carrow, J.K., Thakur, T., et al., Nanoengineered injectable hydrogels for wound healing application, Acta Biomater., 2018, vol. 70, pp. 35–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lowe, B., Venkatesan, J., Anil, S., et al., Preparation and characterization of chitosan-natural nano hydroxyapatite-fucoidan nanocomposites for bone tissue engineering, Int. J. Biol. Macromol., 2016, vol. 93, part B, pp. 1479–1487.

  39. Makino, K., Idenuma, R., Murakami, T., and Ohshima, H., Design of a rate- and time-programming drug release device using a hydrogel: pulsatile drug release from κ-carrageenan hydrogel device by surface erosion of the hydrogel, Colloids Surf., B, 2001, vol. 20, no. 4, pp. 355–359.

    Article  CAS  Google Scholar 

  40. Matthews, K.H., Stevens, H.N.E., Auffret, A.D., et al., Lyophilised wafers as a drug delivery system for wound healing containing methylcellulose as a viscosity modifier, Int. J. Pharm., 2005, vol. 289, pp. 51–62.

    Article  CAS  PubMed  Google Scholar 

  41. Mayet, N., Choonara, Y.E., Kumar, P., et al., A comprehensive review of advanced biopolymeric wound healing systems, J. Pharm. Sci., 2014, vol. 103, no. 8, pp. 2211–2230.

    Article  CAS  PubMed  Google Scholar 

  42. Menshova, R.V., Shevchenko, N.M., Imbs, T.I., et al., Fucoidans from brown alga Fucus evanescens: Structure and biological activity, Front. Mar. Sci., 2016, vol. 3, art. ID 129. https://doi.org/10.3389/fmars.2016.00129

    Article  Google Scholar 

  43. Mishra, S., Sharma, S., Javed, M.N., et al., Bioinspired nanocomposites: Applications in disease diagnosis and treatment, Pharm. Nanotechnol., 2019, vol. 7, no. 3, pp. 206–219.

    Article  CAS  PubMed  Google Scholar 

  44. Murakami, K., Aoki, H., Nakamura, S., et al., Hydrogel blends of chitin/chitosan, fucoidan and alginate as healing-impaired wound dressings, Biomaterials, 2010, vol. 31, no. 1, pp. 83–90.

    Article  CAS  PubMed  Google Scholar 

  45. Nakamura, S., Nambu, M., Ishizuka T., et al., Effect of controlled release of fibroblast growth factor-2 from chitosan/fucoidan micro complex-hydrogel on in vitro and in vivo vascularization, J. Biomed. Mater. Res., Part A, 2008, vol. 85, no. 3, pp. 619–627.

    Article  CAS  Google Scholar 

  46. Park, J.-H., Choi, S.-H., Park, S.-J., et al., Promoting wound healing using low molecular weight fucoidan in a full-thickness dermal excision rat model, Mar. Drugs, 2017, vol. 15, no. 4, art. ID 112. https://doi.org/10.3390/md15040112

    Article  CAS  PubMed Central  Google Scholar 

  47. Pawar, H.V., Boateng, J.S., Ayensu, I., and Tetteh, J., Multifunctional medicated lyophilised wafer dressing for effective chronic wound healing, J. Pharm. Sci., 2014, vol. 103, pp. 1720–1733.

    Article  CAS  PubMed  Google Scholar 

  48. Popa, E.G., Reis, R.L., and Gomes, M.E., Seaweed polysaccharide-based hydrogels used for the regeneration of articular cartilage, Crit. Rev. Biotechnol., 2015, vol. 35, no. 3, pp. 410–424.

    Article  PubMed  CAS  Google Scholar 

  49. Popa, E.G., Caridade, S.G., Mano, J.F., et al., Chondrogenic potential of injectable κ-carrageenan hydrogel with encapsulated adipose stem cells for cartilage tissue-engineering applications, J. Tissue Eng. Regener. Med., 2015, vol. 9, pp. 550–563.

    Article  CAS  Google Scholar 

  50. Popa, E.G., Gomes, M.E., and Reis, R.L., Cell delivery systems using alginate–carrageenan hydrogel beads and fibers for regenerative medicine applications, Biomacromolecules, 2011, vol. 12, pp. 3952–3961.

    Article  CAS  PubMed  Google Scholar 

  51. Pozharitskaya, O.N., Shikov, A.N., Obluchinskaya, E.D., and Vuorela, H., The pharmacokinetics of fucoidan after topical application to rats, Mar. Drugs, 2019, vol. 17, no. 12, art. ID 687. https://doi.org/10.3390/md17120687

    Article  CAS  PubMed Central  Google Scholar 

  52. Purnama, A., Aid-Launais, R., Haddad, O., et al., Fucoidan in a 3D scaffold interacts with vascular endothelial growth factor and promotes neovascularization in mice, Drug Delivery Transl. Res., 2015, vol. 5, pp. 187–197.

    Article  CAS  Google Scholar 

  53. Rode, M.P., Angulski, A.B.B., Gomes, F.A., et al., Carrageenan hydrogel as a scaffold for skin-derived multipotent stromal cells delivery, J. Biomater. Appl., 2018, vol. 33, no. 3, pp. 422–434.

    Article  CAS  PubMed  Google Scholar 

  54. Rupérez, P., Gómez-Ordóñez, E., and Jiménez-Escrig, A., Biological activity of algal sulfated and nonsulfated polysaccharides, Bioact. Compd. Mar. Foods: Plant Anim. Sources, 2013, vol. 11, pp. 219–247.

    Article  Google Scholar 

  55. Saarai, A., Sedlacek, T., Kasparkova, V., et al., On the characterization of sodium alginate/gelatine-based hydrogels for wound dressing, J. Appl. Polym. Sci., 2012, vol. 126, pp. E79–E88.

    Article  CAS  Google Scholar 

  56. Sezer, A.D., Cevher, E., Hatipoğlu, F., et al., Preparation of fucoidan-chitosan hydrogel and its application as burn healing accelerator on rabbits, Biol. Pharm. Bull., 2008, vol. 31, pp. 2326–2333.

    Article  CAS  PubMed  Google Scholar 

  57. Shafei, S., Khanmohammadi, M., Heidari, R., et al., Exosome loaded alginate hydrogel promotes tissue regeneration in full-thickness skin wounds: An in vivo study, J. Biomed. Mater. Res., Part A, 2020, vol. 108, no. 3, pp. 545–556.

    Article  CAS  Google Scholar 

  58. Shen, Y.-R. and Kuo, M.-I., Effects of different carrageenan types on the rheological and water-holding properties of tofu, LWT—Food Sci. Technol., 2017, vol. 78, pp. 122–128.

    Article  CAS  Google Scholar 

  59. Slima, S.B., Trabelsi, I., Ktari, N., et al., Novel Sorghum bicolor (L.) seed polysaccharide structure, hemolytic and antioxidant activities, and laser burn wound healing effect, Int. J. Biol. Macromol., 2019, vol. 132, pp. 87–96.

    Article  PubMed  CAS  Google Scholar 

  60. Solovieva, E.V., Fedotov, A.Yu., Mamonov, V.E., et al., Fibrinogen-modified sodium alginate as a scaffold material for skin tissue engineering, Biomed. Mater., 2018, vol. 13, no. 2, art. ID 025007. https://doi.org/10.1088/1748-605X/aa9089

  61. Stößlein, S., Grunwald, I., Stelten, J., and Hartwig, A., In-situ determination of time-dependent alginate-hydrogel formation by mechanical texture analysis, Carbohydr. Polym., 2019, vol. 205, pp. 287–294.

    Article  PubMed  CAS  Google Scholar 

  62. Straccia, M.C., D’Ayala, G.G., Romano, I., et al., Alginate hydrogels coated with chitosan for wound dressing, Mar. Drugs, 2015, vol. 13, pp. 2890–2908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sudarsan, S., Franklin, D.S., and Guhanathan, S., Imbibed salts and pH-responsive behaviours of sodium-alginate based eco-friendly biopolymeric hydrogels-A solventless approach, Macromol.: Indian J., 2015, vol. 11, no. 1, pp. 24–29.

    CAS  Google Scholar 

  64. Sun, J. and Tan, H., Alginate-based biomaterials for regenerative medicine applications, Materials (Basel), 2013, vol. 6, no. 4, pp. 1285–1309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Johari, N.S.C., Aizad, S., and Zubairi, S.I., Efficacy study of carrageenan as an alternative infused material (filler) in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) porous 3D scaffold, Int. J. Polym. Sci., 2017, vol. 2017, art. ID 5029194. https://doi.org/10.1155/2017/5029194

    Article  CAS  Google Scholar 

  66. Tabarsa, M., You, S.-G., Dabaghian, E.H., and Surayot, U., Water-soluble polysaccharides from Ulva intestinalis: Molecular properties, structural elucidation and immunomodulatory activities, J. Food Drug Anal., 2018, vol. 26, pp. 599–608.

    Article  CAS  PubMed  Google Scholar 

  67. Thomas, S., Alginate dressings in surgery and wound management — part 1, J. Wound Care, 2000, vol. 9, no. 2, pp. 56–60.

    Article  CAS  PubMed  Google Scholar 

  68. Torres, M.D., Flórez-Fernández, N., and Domínguez, H., Integral utilization of red seaweed for bioactive production, Mar. Drugs, 2019, vol. 17, no. 6, art. ID 314. https://doi.org/10.3390/md17060314

    Article  CAS  PubMed Central  Google Scholar 

  69. Toskas, G., Hund, R.-D., Laourine, E., et al., Nanofibers based on polysaccharides from the green seaweed Ulva rigida, Carbohydr. Polym., 2011, vol. 84, no. 3, pp. 1093–1102.

    Article  CAS  Google Scholar 

  70. Tziveleka, L.-A., Ioannou, E., and Roussis, V., Ulvan, a bioactive marine sulphated polysaccharide as a key constituent of hybrid biomaterials: A review, Carbohydr. Polym., 2019, vol. 218, pp. 355–370.

    Article  CAS  PubMed  Google Scholar 

  71. Varghese, J.S., Chellappa, N., and Fathima, N.N., Gelatin–carrageenan hydrogels: Role of pore size distribution on drug delivery process, Colloids Surf., B, 2014, vol. 113, pp. 346–351.

    Article  CAS  Google Scholar 

  72. Venkatesan, J., Bhatnagar, I., Manivasagan, P., et al., Alginate composites for bone tissue engineering: A review, Int. J. Biol. Macromol., 2015, vol. 72, pp. 269–281.

    Article  CAS  PubMed  Google Scholar 

  73. Venkatesan, J., Anil, S., Kim, S.-K., and Shim, M.S., Seaweed polysaccharide-based nanoparticles: Preparation and applications for drug delivery, Polymers (Basel), 2016, vol. 8, no. 2, art. ID 30. https://doi.org/10.3390/polym8020030

    Article  CAS  PubMed Central  Google Scholar 

  74. Vlachou, M., Tragou, K., Siamidi, A., et al., Modified in vitro release of the chronobiotic hormone melatonin from matrix tablets based on the marine sulfated polysaccharide ulvan, J. Drug Delivery Sci. Technol., 2018, vol. 44, pp. 41–48.

    Article  CAS  Google Scholar 

  75. Wang, L., Lee, W.W., Oh, J.Y., et al., Protective effect of sulfated polysaccharides from celluclast-assisted extract of Hizikia fusiforme against ultraviolet B-induced skin damage by regulating NF-κB, AP-1, and MAPKs signaling pathways in vitro in human dermal fibroblasts, Mar. Drugs, 2018, vol. 16, art. ID 239. https://doi.org/10.3390/md16070239

    Article  CAS  PubMed Central  Google Scholar 

  76. Wang, S., Wang, W., Hou, L., et al., A sulfated glucuronorhamnan from the green seaweed Monostroma nitidum: characteristics of its structure and antiviral activity, Carbohydr. Polym., 2020, vol. 227, art. ID 115280. https://doi.org/10.1016/j.carbpol.2019.115280

    Article  CAS  PubMed  Google Scholar 

  77. Wurm, F., Pham, T., and Bechtold, T., Modelling of phase separation of alginate-carrageenan gels based on rheology, Food Hydrocolloids, 2019, vol. 89, pp. 765–772.

    Article  CAS  Google Scholar 

  78. Xing, L., Sun, J., Tan, H., et al., Covalently polysaccharide-based alginate/chitosan hydrogel embedded alginate microspheres for BSA encapsulation and soft tissue engineering, Int. J. Biol. Macromol., 2019, vol. 127, pp. 340–348.

    Article  CAS  PubMed  Google Scholar 

  79. Yanagibayashi, S., Kishimoto, S., Ishihara, M., et al., Novel hydrocolloid-sheet as wound dressing to stimulate healing-impaired wound healing in diabetic db/db mice, Bio-Med. Mater. Eng., 2012, vol. 22, pp. 301–310.

    Article  CAS  Google Scholar 

  80. Yegappan, R., Selvaprithiviraj, V., Amirthalingam, S., and Jayakumar, R., Carrageenan based hydrogels for drug delivery, tissue engineering and wound healing, Carbohydr. Polym., 2018, vol. 198, pp. 385–400.

    Article  CAS  PubMed  Google Scholar 

  81. Yoshimura, T., Hirao, N., and Fujioka, R., Preparation and characterization of biodegradable hydrogels based on ulvan, a polysaccharide from green seaweeds, Polym. Renewable Resour., 2016, vol. 7, pp. 33–42.

    Google Scholar 

  82. Yu, C.-C., Chang, J.-J., Lee, Y.-H., et al., Electrospun scaffolds composing of alginate, chitosan, collagen and hydroxyapatite for applying in bone tissue engineering, Mater. Lett., 2013, vol. 93, pp. 133–136.

    Article  CAS  Google Scholar 

  83. Yu, Y., Li, Y., Du, C., et al., Compositional and structural characteristics of sulfated polysaccharide from Enteromorpha prolifera, Carbohydr. Polym., 2017, vol. 165, pp. 221–228.

    Article  CAS  PubMed  Google Scholar 

  84. Yu, Y., Shen, M., Song, Q., and Xie, J., Biological activities and pharmaceutical applications of polysaccharide from natural resources: A review, Carbohydr. Polym., 2018, vol. 183, pp. 91–101.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Kuznetsova.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by I. Barsegova

Published in connection with the 50th Anniversary of the Institute of Marine Biology (currently Zhirmunsky NSCMB FEB RAS).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsova, T.A., Andryukov, B.G., Besednova, N.N. et al. Polysaccharides from Marine Algae in Modern Technologies of Regenerative Medicine. Russ J Mar Biol 47, 1–9 (2021). https://doi.org/10.1134/S1063074021010065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063074021010065

Keywords:

Navigation