Skip to main content
Log in

The Integrated Response of Biomarkers in the Assessment of the Quality of the Marine Environment Based on the Example of the Bivalve Mollusk Mytilus trossulus (Gould, 1850)

  • ORIGINAL PAPERS
  • Published:
Russian Journal of Marine Biology Aims and scope Submit manuscript

Abstract

The possibility of using a battery of biomarkers, that is, the lysosomal membrane stability (LMS), the genetic damage index (GDI), the activities of catalase (CAT) and glutathione-S-transferase (GSТ), the level of malondialdehyde (MDA), and the condition index (CI), was tested for the assessment of pollution in the marine environment. These characters were used to calculate an index reflecting the integrated biomarker response (IBR). The obtained index confirmed the known degree of marine pollution, which increases in the series Vostok Bay < Kozmina Bay < Golden Horn Bay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Barysheva, V.S., Chernova, E.N., and Patrusheva, O.V., Pollution of the marine environment of the Vostok Bay (Japan Sea) by organic matter in 2016–2018, Vestn. Dal’nevost. Otd. Ross. Akad. Nauk, 2019, no. 2, pp. 87–94.

  2. Belcheva, N.N., Istomina, A.A., Kudryashova, Yu.V., and Chelomin, V.P., Marine environment assessment based on oxidative stress indicators and heavy metal content in tissues of the mussel Crenomytilus grayanus (Dunker, 1853) (Bivalvia: Mytilidae), Biol. Morya, 2013, vol. 39, no. 4, pp. 281–286.

    Google Scholar 

  3. Boychenko, T.V., Chemico-ecological and microbiological assessment of the quality of sea surface waters of southern Primorsky Krai, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Vladivostok, 2009.

  4. Zvyagintsev, A.Yu., Morskoe obrastanie v severo-zapadnoi chasti Tikhogo okeana (Marine Fouling in the Northwestern Pacific Ocean), Vladivostok: Dal’nauka, 2005.

  5. Kachestvo morskikh vod po gidrokhimicheskim pokazatelyam. Ezhegodnik 2016 (Quality of Sea Waters in Terms of Hydrochemical Indicators: Yearbook 2016), Moscow: Nauka, 2017.

  6. Kachestvo morskikh vod po gidrokhimicheskim pokazatelyam. Ezhegodnik 2017 (Quality of Sea Waters in Terms of Hydrochemical Indicators: Yearbook 2017), Moscow: Nauka, 2018.

  7. Kachestvo morskikh vod po gidrokhimicheskim pokazatelyam. Ezhegodnik 2018 (Quality of Sea Waters in Terms of Hydrochemical Indicators: Yearbook 2018), Moscow: Nauka, 2019.

  8. Slobodskova, V.V., Kukla, S.P., and Chelomin, V.P., An analysis of the quality of the marine environment based on determination of the genotoxicity of DNA in the gill cells of the Yesso Scallop, Mizuhopecten yessoensis (Jay, 1856), Russ. J. Mar. Biol., 2015, vol. 41, no. 6, pp. 495–498.

    Article  Google Scholar 

  9. Sokolnikova, Yu.N., Trubetskaya, E.V., Beleneva, I.A., et al., Fluorescent in vitro phagocytosis assay differentiates hemocyte activity of the bivalve molluscs Modiolus kurilensis (Bernard, 1983) inhabiting impacted and non-impacted water areas, Russ. J. Mar. Biol., 2015, vol. 41, no. 2, pp. 118–126.

    Article  CAS  Google Scholar 

  10. Chernova, E.N., Changes in trace metal concentrations in the tissues of the White Sea mussel Mytilus edulis over the reproductive cycle, Russ. J. Mar. Biol., 2010, vol. 36, no. 1, pp. 63–69.

    Article  CAS  Google Scholar 

  11. Al-Fanharawi, A.A., Rabee, A.M., and Al-Mamoori, A.M.J., Biochemical and molecular alterations in freshwater mollusks as biomarkers for petroleum product, domestic heating oil, Ecotoxicol. Environ. Saf., 2018, vol. 158, pp 69–77.

    Article  CAS  PubMed  Google Scholar 

  12. Bainy, A.C.D., Almeida, E.A., Müller, I.C., et al., Biochemical responses in farmed mussel Perna perna transplanted to contaminated sites on Santa Catarina Island, SC, Brazil, Mar. Environ. Res., 2000, vol. 50, pp. 411–416.

    Article  CAS  PubMed  Google Scholar 

  13. Benali, I., Boutiba, Z., Merabet, A., and Chèvre, N., Integrated use of biomarkers and condition indices in mussels (Mytilus galloprovincialis) for monitoring pollution and development of biomarker index to assess the potential toxic of coastal sites, Mar. Pollut. Bull., 2015, vol. 95, no. 1, pp. 385–394.

    Article  CAS  PubMed  Google Scholar 

  14. Bendell-Young, L.I. and Arifin, Z., Application of a kinetic model to demonstrate how selective feeding could alter the amount of cadmium accumulated by the blue mussel (Mytilus trossolus), J. Exp. Mar. Biol. Ecol., 2004, vol. 298, pp. 21–33.

    Article  CAS  Google Scholar 

  15. Bjelland, S. and Seeberg, E., Mutagenicity, toxicity and repair of DNA base damage induced by oxidation, Mutat. Res., Fundam. Mol. Mech. Mutagen., 2003, vol. 531, nos. 1–2, pp. 37–80.

    Article  CAS  Google Scholar 

  16. Blanchette, B., Feng, X., and Singh, B.R., Marine glutathione S-transferases, Mar. Biotechnol., 2007, vol. 9, no. 5, pp. 513–542.

    Article  CAS  Google Scholar 

  17. Box, A., Sureda, A., Galgani, F., et al., Assessment of environmental pollution at Balearic Islands applying oxidative stress biomarkers in the mussel Mytilus galloprovincialis, Comp. Biochem. Physiol., Part C: Toxicol. Pharmacol., 2007, vol. 146, no. 4, pp 531–539.

    CAS  Google Scholar 

  18. Buege, J.A. and Aust, S.D., Microsomal lipid peroxidation, Methods Enzymol., 1978, vol. 52, pp. 302–310. https://doi.org/10.1016/s0076-6879(78)52032-6

    Article  CAS  PubMed  Google Scholar 

  19. Chelomin, V.P. and Belcheva, N.N., Alterations of microsomal lipid synthesis in gill cells of bivalve mollusc Mizuhopecten yessoensis in response to cadmium accumulation, Comp. Biochem. Physiol., C: Comp. Pharmacol., 1991, vol. 99, pp. 1–5.

    Article  Google Scholar 

  20. Dagnino, A., Allen, J.I., Moore, M.N., et al., Development of an expert system for the integration of biomarker responses in mussels into an animal health index, Biomarkers, 2007, vol. 12, no. 2, pp. 155–172.

    Article  CAS  PubMed  Google Scholar 

  21. Damiens, G., Gnassia-Barelli, M., Loquès, F., et al., Integrated biomarker response index as a useful tool for environmental assessment evaluated using transplanted mussels, Chemosphere, 2007, vol. 66, no. 3, pp. 574–583.

    Article  CAS  PubMed  Google Scholar 

  22. Frenzilli, G., Nigro, M., Scarcelli, V., et al., DNA integrity and total oxyradical scavenging capacity in the Mediterranean mussel, Mytilus galloprovincialis: a field study in a highly eutrophicated coastal lagoon, Aquat. Toxicol., 2001, vol. 53, no. 1, pp. 19–32.

    Article  CAS  PubMed  Google Scholar 

  23. Frenzilli, G., Bocchetti, R., Pagliarecci, M., et al., Time-course evaluation of ROS-mediated toxicity in mussels, Mytilus galloprovincialis, during a field translocation experiment, Mar. Environ. Res., 2004, vol. 58, nos. 2–5, pp. 609–613.

    Article  CAS  PubMed  Google Scholar 

  24. Gagné, F., Burgeot, T., Hellou, J., et al., Spatial variations in biomarkers of Mytilus edulis mussels at four polluted regions spanning the Northern Hemisphere, Environ. Res., 2008, vol. 107, no. 2, pp. 201–217.

  25. González-Fernández, C., Albentosa, M., Campillo, J.A., et al., Effect of mussel reproductive status on biomarker responses to PAHs: Implications for large-scale monitoring programs, Aquat. Toxicol., 2016, vol. 177, pp. 380–394.

  26. Guerlet, E., Vasseur, P., and Giambérini, L., Spatial and temporal variations of biological responses to environmental pollution in the freshwater zebra mussel, Ecotoxicol. Environ. Saf., 2010, vol. 73, no. 6, pp. 1170–1181.

    Article  CAS  PubMed  Google Scholar 

  27. Guo, R., Pan, L., and Ji, R., A multi-biomarker approach in scallop Chlamys farreri to assess the impact of contaminants in Qingdao coastal area of China, Ecotoxicol. Environ. Saf., 2017, vol. 142, pp. 399–409.

    Article  CAS  PubMed  Google Scholar 

  28. Habig, W.H. and Jakoby, W.B., Assay for differentiation of glutathione S-Transferases, Methods Enzymol., 1981, vol. 77, pp. 398–405.

    Article  CAS  PubMed  Google Scholar 

  29. Halliwell, B. and Gutteridge, J.M.C., Free Radicals in Biology and Medicine, 4th ed., Oxford: Oxford Univ. Press, 2007.

    Google Scholar 

  30. Hayes, J.D., Flanagan, J.U., and Jowsey, I.R., Glutathione transferases, Annu. Rev. Pharmacol. Toxicol., 2005, vol. 45, pp. 51–88.

    Article  CAS  PubMed  Google Scholar 

  31. Kurz, T., Terman, A., Gustafsson, B., and Brunk, U.T., Lysosomes and oxidative stress in aging and apoptosis, Biochim. Biophys. Acta, Gen. Subj., 2008, vol. 1780, no. 11, pp. 1291–1303. https://doi.org/10.1016/j.bbagen.2008.01.009

    Article  CAS  Google Scholar 

  32. Lehtonen, K.K., Turja, R., Budzinski, H., and Devier, M.-H., An integrated chemical-biological study using caged mussels (Mytilus trossulus) along a pollution gradient in the Archipelago Sea (SW Finland, Baltic Sea), Mar. Environ. Res., 2016, vol. 119, pp. 207–221.

    Article  CAS  PubMed  Google Scholar 

  33. Lompré, J.S., Malanga, G., Gil, M.N., and Giarratano, E., Multiple-biomarker approach in a commercial marine scallop from San Jose gulf (Patagonia, Argentina) for health status assessment, Arch. Environ. Contam. Toxicol., 2020, vol. 78, no. 3, pp. 451–462.

  34. Lowe, D.M., Fossato, V.U., and Depledge, M.H., Contaminant-induced lysosomal membrane damage in blood cells of mussels Mytilus galloprovincialis from the Venice Lagoon: an in vitro study, Mar. Ecol.: Prog. Ser., 1995, vol. 129, pp. 189–196.

    Article  Google Scholar 

  35. Lushchak, V.I., Environmentally induced oxidative stress in aquatic animals, Aquat. Toxicol., 2011, vol. 101, no. 1, pp. 13–30.

    Article  CAS  PubMed  Google Scholar 

  36. Maria, V.L. and Bebianno, M.J., Antioxidant and lipid peroxidation responses in Mytilus galloprovincialis exposed to mixtures of benzo(a)pyrene and copper, Comp. Biochem. Physiol., Part C: Toxicol. Pharmacol., 2011, vol. 154, pp. 56–63.

    CAS  Google Scholar 

  37. Markwell, M.A., Haas, S.M., Bieber, L.L., and Tolbert, N.E., A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples, Anal. Biochem., 1978, vol. 87, no. 1, pp. 206–210.

    Article  CAS  PubMed  Google Scholar 

  38. Martínez-Gómez, C., Bignell, J., and Lowe, D., Lysosomal Membrane Stability in Mussels, ICES Techniques in Marine Environmental Sciences, vol. 56, Copenhagen: Int. Counc. Explor. Sea, 2015.

  39. Mitchelmore, C.L. and Chipman, J.K., Detection of DNA strand breaks in brown trout (Salmo trutta) hepatocytes and blood cells using the single cell gel electrophoresis (comet) assay, Aquat. Toxicol., 1998, vol. 41, pp. 161–182.

    Article  CAS  Google Scholar 

  40. Moore, M.N., Diet restriction induced autophagy: A lysosomal protective system against oxidative- and pollutant-stress and cell injury, Mar. Environ. Res., 2004, vol. 58, pp. 603–607.

    Article  PubMed  CAS  Google Scholar 

  41. Nasci, C., Nesto, N., Monteduro, R.A., and Da Ros, L., Field application of biochemical markers and a physiological index in the mussel, Mytilus galloprovincialis: transplantation and biomonitoring studies in the lagoon of Venice (NE Italy), Mar. Environ. Res., 2002, vol. 54, pp. 811–816.

    Article  CAS  PubMed  Google Scholar 

  42. Nicholson, S., Cytological and physiological biomarker responses from green mussels, Perna viridis (L.) transplanted to contaminated sites in Hong Kong coastal waters, Mar. Pollut. Bull., 1999, vol. 39, pp. 261–268.

    Article  CAS  Google Scholar 

  43. Nicholson, S. and Lam, P.K.S., Pollution monitoring in Southeast Asia using biomarkers in the mytilid mussel Perna viridis (Mytilidae: Bivalvia), Environ. Int., 2005, vol. 31, no. 1, pp. 121–132.

    Article  CAS  PubMed  Google Scholar 

  44. Pempkowiak, J., Pazdro, K., Kopecka, J., et al., Toxicants accumulation rates and effects in Mytilus trossulus and Nereis diversicolor exposed separately or together to cadmium and PAHs, J. Environ. Sci. Health, Part A: Environ. Sci. Eng. Toxic Hazard. Subst. Control, 2006, vol. 41, pp. 2571–2586.

    Article  CAS  Google Scholar 

  45. Regoli, F. and Principato, G., Glutathione, glutathione-dependent and antioxidant enzymes in mussel, Mytilus galloprovincialis, exposed to metals under field and laboratory conditions: implications for the use of biochemical biomarkers, Aquat. Toxicol., 1995, vol. 31, no. 2, pp. 143–164.

    Article  CAS  Google Scholar 

  46. Regoli, F., Nigro, M., and Orlando, E., Lysosomal and antioxidant responses to metals in the Antarctic scallop Adamussium colbecki, Aquat. Toxicol., 1998, vol. 40, pp. 375–392.

    Article  Google Scholar 

  47. Regoli, F., Frenzilli, G., Bocchetti, R., et al., Time-course variations of oxyradical metabolism, DNA integrity and lysosomal stability in mussels, Mytilus galloprovincialis, during a field translocation experiment, Aquat. Toxicol., 2004, vol. 68, pp. 167–178.

    Article  CAS  PubMed  Google Scholar 

  48. Sanchez, W., Burgeot, T., and Porcher, J.-M., A novel “Integrated Biomarker Response” calculation based on reference deviation concept, Environ. Sci. Pollut. Res., 2013, vol. 20, pp. 2721–2725.

    Article  CAS  Google Scholar 

  49. She, Y.-M., Narindrasorasak, S., Yang, S., et al., Identification of metal-binding proteins in human hepatoma lines by immobilized metal affinity chromatography and mass spectrometry, Mol. Cell. Proteomics, 2003, vol. 2, pp. 1306–1318.

    Article  CAS  PubMed  Google Scholar 

  50. Storey, K.B., Oxidative stress: animal adaptations in nature, Braz. J. Med. Biol. Res., 1996, vol. 29, no. 12, pp. 1715–1733.

    CAS  PubMed  Google Scholar 

  51. Torres, M.A., Testa, C.P., Gáspari, C., et al., Oxidative stress in the mussel Mytella guyanensis from polluted mangroves on Santa Catarina Island, Brazil, Mar. Pollut. Bull., 2002, vol. 44, pp. 923–932.

    Article  PubMed  Google Scholar 

  52. Vasanthi, L.A., Revathi, P., Babu Rajendran, R., and Munuswamy, N., Detection of metal induced cytopathological alterations and DNA damage in the gills and hepatopancreas of green mussel Perna viridis from Ennore Estuary, Chennai, India, Mar. Pollut. Bull., 2017, vol. 117, nos. 1–2, pp. 41–49.

    Article  CAS  PubMed  Google Scholar 

  53. Vethaak, A.D., Davies, I.M., Thain, J.E., et al., Integrated indicator framework and methodology for monitoring and assessment of hazardous substances and their effects in the marine environment, Mar. Environ. Res., 2017, vol. 124, pp. 11–20.

    Article  CAS  PubMed  Google Scholar 

  54. Vieira, C.E.D., Almeida, M.S., Galindo, B.A., et al., Integrated biomarker response index using a Neotropical fish to assess the water quality in agricultural areas, Neotrop. Ichthyol., 2014, vol. 12, no. 1, pp. 153–164.

    Article  Google Scholar 

  55. Yoshinaga, M., Ueki, T., and Michibata, H., Metal binding ability of glutathione transferases conserved between two animal species, the vanadium-rich ascidian Ascidia sydneiensis samea and the schistosome Schistosoma japonicum, Biochim. Biophys. Acta, Gen. Subj., 2007, vol. 1770, pp. 1413–1418.

    Article  CAS  Google Scholar 

Download references

Funding

The research was supported by the Russian Foundation for Basic Research (project no. 19-35-90015) and partly by the State assignment for research work of V.I. Il’ichev Pacific Oceanological Institute, FEB RAS (no. 121-21500052-9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Mazur.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Translated by I. Barsegova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Istomina, A.A., Mazur, A.A., Chelomin, V.P. et al. The Integrated Response of Biomarkers in the Assessment of the Quality of the Marine Environment Based on the Example of the Bivalve Mollusk Mytilus trossulus (Gould, 1850). Russ J Mar Biol 47, 185–192 (2021). https://doi.org/10.1134/S1063074021030068

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063074021030068

Keywords:

Navigation