Skip to main content
Log in

Osmotic and Ionic Regulation in the Far Eastern Big-Scaled Redfin Tribolodon hakonensis Günther, 1877 (Cypriniformes: Cyprinidae) in the Sea and in Rivers

  • ORIGINAL PAPERS
  • Published:
Russian Journal of Marine Biology Aims and scope Submit manuscript

Abstract

The values of the osmolality and the contents of sodium, potassium, as well as the contents of the total, free, and bound water fractions in blood serum, muscles, liver, and brain that are characteristic for fish in the sea and in rivers were determined for the far eastern big-scaled redfin, Tribolodon hakonensis. The osmolality associated with the content of inorganic ions (Osminorg) was the same in the internal environment (blood serum), in the muscles, liver, and brain of redfins caught in the sea at the gonad maturity stage IV. In fish caught in the sea in pre-spawning period (gonad maturity stage V) and in rivers after spawning (gonad maturity stage VI-II) or in wintering period (gonad maturity stage IV), Osminorg in muscles, liver, and brain was significantly lower than in the blood serum. To achieve osmotic equilibrium with the internal environment, the lack of electrolytes in body tissues was compensated by accumulation of organic osmolytes. Migration of the redfin from rivers to the sea was associated with a significant increase in Osminorg in the blood serum, by 9.4–18.7% on average. As an adaptation in response to this increase, muscle tissue cells increased the concentration of sodium and potassium, while liver and brain cells accumulated potassium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Andreeva, A.M., Lamash, N.E., Serebryakova, M.V., and Ryabtseva, I.P., Seasonal dynamics in capillary filtration of plasma proteins in eastern redfins of the genus Tribolodon (Cyprinidae), J. Ichthyol., 2015, vol. 55, no. 5, pp. 723–733. https://doi.org/10.1134/S003294521505001X

    Article  Google Scholar 

  2. Andreeva, A.M., Serebryakova, M.V., Lamash, N.E., et al., Structural features of the low-molecular-weight plasma fraction in far eastern redfins of the genus Tribolodon and other cyprinid fishes, Russ. J. Mar. Biol., 2015, vol. 41, no. 1, pp. 60–68. https://doi.org/10.1134/S1063074015010022

    Article  Google Scholar 

  3. Gavrenkov, Yu.I., Biology, morphology and state of stock of Far Eastern redfins of the genus Tribolodon in southern Primorye, Izv. Tikhookean. Nauchno-Issled. Inst. Rybn. Khoz. Okeanogr., 1998, vol. 123, pp. 74–81.

    Google Scholar 

  4. Gavrenkov, Yu.I. and Sviridov, V.V., Breeding ecology of the Far Eastern redfins of the genus Tribolodon in river basins of Primorskii krai, in Chteniya pamyati V.Ya. Levanidova (Vladimir Ya. Levanidov’s Biennial Memorial Meetings), Vladivostok: Dal’nauka, 2001, no. 1, pp. 296–304.

  5. Martem’yanov, V.I., Ranges of regulation of sodium, potassium, calcium, magnesium concentrations in plasma, erythrocytes, and muscle tissue of Rutilus rutilus under natural conditions, J. Evol. Biochem. Physiol., 2001, vol. 37, pp. 141–147. https://doi.org/10.1023/A:1017680829971

    Article  Google Scholar 

  6. Martemyanov, V.I., Dynamics of cation content in blood plasma, erythrocytes and muscular tissue of roach Rutilus rutilus L. spawners in breeding season, Biol. Vnutr. Vod, 2004, no. 2, pp. 69–75.

  7. Martemyanov, V.I., Estimation of the status of fishes in relation to salinity of environment on the basis of types of osmotic and ionic regulation, Tr. Zool. Inst., Ross. Akad. Nauk, 2013, vol. 317, suppl. 3, pp. 175–181.

    Google Scholar 

  8. Martemyanov, V.I., Methods to determine total water, free water fraction, and attached water fraction in the organism and tissues of hydrobionts, Voda: Khim. Ekol., 2014, vol. 67, no. 2, pp. 86–95.

    Google Scholar 

  9. Martemyanov, V.I., Mechanisms of regulation of erythrocyte volume in common carp Cyprinus carpio (Cyprinidae) at increase in the osmotic concentration of blood plasma within the zone of critical water salinity, J. Ichthyol., 2017, vol. 57, pp. 306–312. https://doi.org/10.1134/S0032945217020114

    Article  Google Scholar 

  10. Martemyanov, V.I., Indicators of osmotic and ion regulation in the fish of the White Sea, J. Ichthyol., 2020, vol. 60, no. 2, pp. 305–314. https://doi.org/10.1134/S0032945220020101

    Article  Google Scholar 

  11. Martemyanov, V.I. and Vasiliev, A.S., Regulation of volumes of the muscle, liver, and brain erythrocytes in crucian carp Carassius auratus (Cyprinidae) in response to increase in the osmotic concentration in blood plasma, J. Ichthyol., 2018, vol. 58, no. 4, pp. 563–569. https://doi.org/10.1134/S0032945218040112

    Article  Google Scholar 

  12. Sakun, O.F. and Butskaya, N.A., Opredelenie stadii zrelosti i izuchenie polovykh produktov ryb (Determination of Maturity Stages and Study of Fish Sex Products), Murmansk: Polar Res. Inst. Fish. Oceanogr., 1968.

  13. Sviridov, V.V., Morphological and genetic divergence and geographic variability of the Far Eastern redfins of the genus Tribolodon, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Vladivostok: Far East. State Univ., 2002.

  14. Khlebovich, V.V., Kriticheskaya solenost’ biologicheskikh protsessov (Critical Salinity of Biological Processes), Leningrad: Nauka, 1974.

  15. Ahokas, R.A. and Sorg, G., The effect of salinity and temperature on intracellular osmoregulation and muscle free amino acids in Fundulus diaphanous, Comp. Biochem. Physiol., Part A: Physiol., 1977, vol. 56, pp. 101–105. https://doi.org/10.1016/0300-9629(77)90448-0

    Article  CAS  Google Scholar 

  16. Assem, H. and Hanke, W., The significance of the amino acids during osmotic adjustment in teleost fish—I. Changes in the euryhaline Sarotherodon mossambicus, Comp. Biochem. Physiol., Part A: Physiol., 1983, vol. 74, pp. 531–536.

    Article  Google Scholar 

  17. Brykov, Vl.A., Polyakova, N.E., and Semina, A.V., Phylogeographic analysis reveals two periods of divergence in large-scaled redfin Tribolodon hakonensis (Pisces, Cyprinidae), Russ. J. Gen., 2011, vol. 47, no. 11, pp. 1324–1332.

    Article  CAS  Google Scholar 

  18. Brykov, Vl.A., Polyakova, N.E., and Semina, A.V., Comparative analysis of mitochondrial DNA variation in four species of Far Eastern redfins of the genus Tribolodon (Pisces, Cyprinidae), Russ. J. Gen., 2013, vol. 49, no. 3, pp. 310–319.

    Article  CAS  Google Scholar 

  19. Davis, K.B. and Simco, B.A., Salinity effects on plasma electrolytes of channel catfish, Ictalurus punctatus, J. Fish. Res. Board Can., 1976, vol. 33, pp. 741–746. https://doi.org/10.1139/f76-091

    Article  CAS  Google Scholar 

  20. Christensen, E.A.F., Svendsen, M.B.S., and Steffensen, J.F., Plasma osmolality and oxygen consumption of perch Perca fluviatilis in response to different salinities and temperatures, J. Fish Biol., 2017, vol. 90, no. 3, pp. 819–833. https://doi.org/10.1111/jfb.13200

    Article  CAS  PubMed  Google Scholar 

  21. Fugelli, K. and Zachariassen, K.E., The distribution of taurine, gamma-aminobutyric acid and inorganic ions between plasma and erythrocytes in flounder (Platichthys flesus) at different plasma osmolalities, Comp. Biochem. Physiol., Part A: Physiol., 1976, vol. 55, pp. 173–177. https://doi.org/10.1016/0300-9629(76)90088-8

    Article  CAS  Google Scholar 

  22. Gordon, M.S., Intracellular osmoregulation in skeletal muscle during salinity adaptation in two species of toads, Biol. Bull., 1965, vol. 128, pp. 218–229.

    Article  CAS  Google Scholar 

  23. Hegab, S.A. and Hanke, W., Electrolyte changes and volume regulatory processes in the carp (Cyprinus carpio) during osmotic stress, Comp. Biochem. Physiol., Part A: Physiol., 1982, vol. 71, pp. 157–164. https://doi.org/10.1016/0300-9629(82)90384-X

    Article  Google Scholar 

  24. Hegab, S.A. and Hanke, W., The significance of the amino acids during osmotic adjustment in teleost fish—II. Changes in the stenohaline Cyprinus carpio, Comp. Biochem. Physiol., Part A: Physiol., 1983, vol. 74, pp. 537–543.

    Article  Google Scholar 

  25. Huggins, A.K. and Colley, L., The changes in the non-protein nitrogenous constituents of muscle during the adaptation of the eel Anguilla anguilla L. from fresh water to sea water, Comp. Biochem. Physiol., Part B: Comp. Biochem., 1971, vol. 38, pp. 537–541. https://doi.org/10.1016/0305-0491(71)90310-5

    CAS  Google Scholar 

  26. Lange, R. and Fugelli, K., The osmotic adjustment in the euryhaline teleosts, the flounder, Pleuronectes flesus L. and the three-spined stickleback, Gasterosteus aculeatus L., Comp. Biochem. Physiol., 1965, vol. 15, pp. 283–292.

    Article  CAS  Google Scholar 

  27. Lasserre, P. and Gilles, R., Modification of the amino acid pool in the parietal muscle of two euryhaline teleosts during osmotic adjustment, Experientia, 1971, vol. 27, no. 12, pp. 1434–1435.

    Article  CAS  Google Scholar 

  28. Martemyanov, V.I., Stress reaction in freshwater fish in response to extreme impacts and during the reproduction period, J. Coastal Life Med., 2015, vol. 3, no. 3, pp. 169–177.

    Google Scholar 

  29. Martemyanov, V.I. and Poddubnaya, N.Y., Volume regulation of muscle cells in the carp Cyprinus carpio in response to hypernatremia, Bratisl. Lek. Listy, 2019, vol. 120, no. 1, pp. 52–57. https://doi.org/10.4149/BLL_2019_008

    Article  CAS  PubMed  Google Scholar 

  30. Somero, G.N., Protons, osmolytes, and fitness of internal milieu for protein function, Am. J. Physiol.: Regul., Integr. Comp. Physiol., 1986, vol. 251, pp. R197–R213.

    Article  CAS  Google Scholar 

  31. Takeuchi, K., Toyohara, H., Kinoshita, M., and Sakaguchi, M., Ubiquitous increase in taurine transporter mRNA in tissues of tilapia (Oreochromis mossambicus) during high-salinity adaptation, Fish Physiol. Biochem., 2001, vol. 23, pp. 173–182. https://doi.org/10.1023/A:1007889725718

    Article  Google Scholar 

  32. Venkatachari, S.A.T., Effect of salinity adaptation on nitrogen metabolism in the freshwater fish Tilapia mossambica. I. Tissue protein and amino acid levels, Mar. Biol., 1974, vol. 24, pp. 57–63. https://doi.org/10.1007/BF00402847

    Article  CAS  Google Scholar 

  33. Vislie, T., Hyper-osmotic cell volume regulation in vivo and in vitro in flounder (Platichthys flesus) heart ventricles, J. Comp. Physiol., 1980, vol. 140, no. 3, pp. 185–191. https://doi.org/10.1007/BF00690402

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to thank the Center for Collective Use at the Primorsky Aquarium (Zhirmunsky National Scientific Center of Marine Biology FEB RAS, Vladivostok) for providing conditions for collection and primary processing of biological material.

Funding

This work was carried out within the framework of a State assignment (projects nos. AAAA-A18-118012690101-2 and АААА-А19-119102890013-3) and with partial support from the Russian Foundation for Basic Research (Project no. 16-04-00120a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Martemyanov.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Translated by I. Barsegova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martemyanov, V.I., Lamash, N.E. & Andreeva, A.M. Osmotic and Ionic Regulation in the Far Eastern Big-Scaled Redfin Tribolodon hakonensis Günther, 1877 (Cypriniformes: Cyprinidae) in the Sea and in Rivers. Russ J Mar Biol 47, 162–168 (2021). https://doi.org/10.1134/S1063074021030081

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063074021030081

Keywords:

Navigation