Skip to main content
Log in

Antimicrobial Activity of Marine Microalgae

  • REVIEW
  • Published:
Russian Journal of Marine Biology Aims and scope Submit manuscript

Abstract

Marine microalgae from the divisions Chlorophyta, Bacillariophyta, Dinoflagellata, Haptophyta, Rhodophyta, and cyanobacteria (Cyanophyta) are increasingly used for designing novel antibacterial agents. The present review summarizes information on the antimicrobial activities of these organisms. Particular attention is paid to abiotic factors (light, temperature, salinity, pH of the environment, and nutrients) that enhance their bactericidal properties. The mechanisms of action and the methods for extraction of bioactive substances are analyzed. Species that have a potential to inhibit bacterial growth are noted. A number of microalgae preparations that have undergone clinical trials, those already used to treat bacterial infections, and the species that can serve a basis for designing novel antibiotics are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Krivosheeva, A.M., Buzoleva, L.S., and Aizdaicher, N.A., Biological action of exometabolites of marine microalgae Phaeodactylum tricornutum on the reproduction of Staphylococcus aureus and Salmonella typhimurium, Mezhdunar. Zh. Exp. Obraz., 2013, no. 102, pp. 283–287.

  2. Salnikova, M.Ya., Khlorella – novyi vid korma (Chlorella: A New Type of Nutrition), Moscow: Kolos, 1977.

  3. Adarme-Vega, T.C., Optimization of microalgal growth conditions for production of eicosapentaenoic acid (EPA), Doctoral Dissertation, Brisbane: Queensland Univ., 2014, pp. 132–134.

  4. Alsenani, F., Tupally, K.R., Chua, E.T., et al., Evaluation of microalgae and cyanobacteria as potential sources of antimicrobial compounds, Saudi Pharm. J., 2020, vol. 28, no. 12, pp. 1834–1841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ambrico, A., Trupo, M., and Magarelli, R., Effectiveness of Dunaliella salina extracts against Bacillus subtilis and bacterial plant pathogens, Pathogens, 2020, vol. 9, no. 8, art. ID 613. https://doi.org/10.3390/pathogens9080613

    Article  CAS  PubMed Central  Google Scholar 

  6. Bai, V.D.M. and Krishnakumar, S., Evaluation of antimicrobial metabolites from marine microalgae Tetraselmis suecica using gas chromatography – mass spectrometry (GC – MS) analysis, Int. J. Pharm. Pharm. Sci., 2013, vol. 5, pp. 17–23.

    Google Scholar 

  7. Bashir, K.M.I., Lee, J.-H., Petermann, M.J., et al., Estimation of antibacterial properties of Chlorophyta, Rhodophyta and Haptophyta microalgae species, Microbiol. Biotechnol. Lett., 2018, vol. 46, no. 3, pp. 225–233.

    Article  CAS  Google Scholar 

  8. Belhaj, D., Frikha, D., Athmouni K., et al., Box-Behnken design for extraction optimization of crude polysaccharides from Tunisian Phormidium versicolor cyanobacteria (NCC 466): Partial characterization, in vitro antioxidant and antimicrobial activities, Int. J. Biol. Macromol., 2017, vol. 105, pp. 1501–1510.

    Article  CAS  PubMed  Google Scholar 

  9. Bhattacharjya, R., Marella, T.K., Tiwari, A., et al., Bioprospecting of marine diatoms Thalassiosira, Skeletonema and Chaetoceros for lipids and other value-added products, Bioresour. Technol., 2020, vol. 318, art. ID 124073. https://doi.org/10.1016/j.biortech.2020.124073

    Article  CAS  PubMed  Google Scholar 

  10. Borase, H.P., Patil, C.D., Suryawanshi, R.K., et al., Mechanistic approach for fabrication of gold nanoparticles by Nitzschia diatom and their antibacterial activity, Bioprocess Biosyst. Eng., 2017, vol. 40, pp. 1437–1446.

    Article  CAS  PubMed  Google Scholar 

  11. Borowitzka, M.A., Microalgae as sources of pharmaceuticals and other biologically active compounds, J. Appl. Phycol., 1995, vol. 7, pp. 3–15.

    Article  CAS  Google Scholar 

  12. Burleson, C., Production of bioactive secondary metabolites by Florida harmful bloom dinoflagellates Karenia brevis and Pyrodinium bahamense, PhD Dissertation, Tampa: Univ. South Florida, 2012, vol. 21, pp. 45–49.

  13. Cairesa, T.A., da Silva, A.M.S., Vasconcelosb, V.M., et al., Biotechnological potential of Neolyngbya (Cyanobacteria), a new marine benthic filamentous genus from Brazil, Algal Res., 2018, vol. 36, no. 21, pp. 1–9.

    Article  Google Scholar 

  14. Clark, B.R., Engene, N., Teasdale, M.E., et al., Natural products chemistry and taxonomy of the marine cyanobacterium Blennothrix cantharidosmum, J. Nat. Prod., 2008, vol. 71, no. 9, pp. 1530–1537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Depauw, F.A., Rogato, A., Ribera d’Alcalá, M., and Falciatore, A., Exploring the molecular basis of responses to light in marine diatoms, J. Exp. Bot., 2012, vol. 63, no. 4, pp. 1575–1591.

    Article  CAS  PubMed  Google Scholar 

  16. Desbois, A.P., Mearns-Spragg, A., and Smith, V.J., A fatty acid from the diatom Phaeodactylum tricornutum is antibacterial against diverse bacteria including multi-resistant Staphylococcus aureus (MRSA), Mar. Biotechnol., 2009, vol. 11, pp. 45–52.

    Article  CAS  Google Scholar 

  17. De Vera, C.R., Díaz Crespín, G., Hernandez Daranas, A., et al., Marine microalgae: promising source for new bioactive compounds, Mar. Drugs, 2018, vol. 16, no. 9, art. ID 317. https://doi.org/10.3390/md16090317

    Article  CAS  PubMed Central  Google Scholar 

  18. Dobretsov, S., Teplitski, M., Alagely, A., et al., Malyngolide from the cyanobacterium Lyngbya majuscula interferes with quorum sensing circuitry, Environ. Microbiol. Rep., 2010, vol. 2, no. 6 pp. 739–744.

    Article  CAS  PubMed  Google Scholar 

  19. Durmaz, Y., Monteiro, M., Bandarra, N., et al., The effect of low temperature on fatty acid composition and tocopherols of the red microalga Porphyridium cruentum, J. Appl. Phycol., 2007, vol. 19, pp. 223–227.

    Article  CAS  Google Scholar 

  20. El-Kassas, H.Ya. and El-Sheekh, M.M., Induction of the synthesis of bioactive compounds of the marine alga Tetraselmis tetrathele (West) Butcher grown under salinity stress, Egypt. J. Aquat. Res., 2016, vol. 42, no. 4, pp. 385–391.

    Article  Google Scholar 

  21. Falaise, C., François, C., Travers, M.A., et al., Antimicrobial compounds from eukaryotic microalgae against human pathogens and diseases in aquaculture, Mar. Drugs, 2016, vol. 14, no. 9, pp. 159–164.

    Article  PubMed Central  CAS  Google Scholar 

  22. Fehling, J., Green, D.H., Davidson, K., et al., Domoic acid production by Pseudo-nitzschia seriata (Bacillariophyceae) in Scottish waters, J. Phycol., 2004, vol. 40, no. 4, pp. 622–630.

    Article  CAS  Google Scholar 

  23. Findlay, J.A. and Patil, A.D., Antibacterial constituents of the diatom Navicula delognei, J. Nat. Prod., 1984, vol. 47, no. 5, pp. 815–818.

    Article  CAS  PubMed  Google Scholar 

  24. Gacheva, G.V. and Gigova, L.G., Biological activity of microalgae can be enhanced by manipulating the cultivation temperature and irradiance, Cent. Eur. J. Biol., 2014, vol. 9, no. 12, pp. 1168–1181.

    CAS  Google Scholar 

  25. Gastineau, R., Hardivillier, Ya., Leignel, V., et al., Greening effect on oysters and biological activities of the blue pigments produced by the diatom Haslea karadagensis (Naviculaceae), Aquaculture, 2012, vols. 368–369, pp. 61–67.

    Article  Google Scholar 

  26. Gastineau, R., Pouvreau, J.-B., Hellio C., et al., Biological activities of purified marennine, the blue pigment responsible for the greening of oysters, J. Agric. Food Chem., 2012, vol. 60, pp. 3599–3605.

    Article  CAS  PubMed  Google Scholar 

  27. George, S., Chellappan, A., Antonykennady, E., et al., Effect of algal antimicrobials on selected aquatic pathogen and characterization of bioactive compounds, J. Appl. Pharm. Sci., 2020, vol. 10, no. 9, pp. 122–133.

    CAS  Google Scholar 

  28. Guihéneuf, F. and Stengel, D., Towards the biorefinery concept: Interaction of light, temperature and nitrogen for optimizing the co-production of high-value compounds in Porphyridium purpureum, Algal Res., 2015, vol. 10, pp. 152–163.

    Article  Google Scholar 

  29. Helen, D.Y., Appavoo, R.M., and Parthipan, B., Antibiotic activity of Cyanobacteria isolated from salt pans of Kanyakumari District (South India) against human pathogenic bacteria, Int. J. Curr. Sci., 2014, vol. 11, pp. 32–39.

    Google Scholar 

  30. Hemalatha, A., Mohammed Esa, S.A.R., Suresh, M., et al., Identification of Odontella aurita by rbcL gene sequence – a high antibacterial potential centric marine diatom, Mitochondrial DNA, Part A, 2017, vol. 28, no. 5, pp. 655–661.

    Article  CAS  Google Scholar 

  31. Herrero, M., Ibáñez, E., Cifuentes, A., et al., Dunaliella salina microalga pressurized liquid extracts as potential antimicrobials, J. Food Prot., 2006, vol. 69, no. 10, pp. 2471–2477.

    Article  CAS  PubMed  Google Scholar 

  32. Huseby, S., Degerlund, M., Eriksen, G.K., et al., Chemical diversity as a function of temperature in six northern diatom species, Mar. Drugs, 2013, vol. 11, no. 11, pp. 4232–4245.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Hussein, H.A., Syamsumir, D.F., Radzi, S.A.M., et al., Phytochemical screening, metabolite profiling and enhanced antimicrobial activities of microalgal crude extracts in co-application with silver nanoparticle, Bioresour. Bioprocess., 2020, vol. 7, art. ID 39. https://doi.org/10.1186/s40643-020-00322-w

    Article  Google Scholar 

  34. Ingebrigtsen, R.A., Hansen, E., Andersen, J.H., and Eilertsen, H.C., Light and temperature effects on bioactivity in diatoms, J. Appl. Phycol., 2016, vol. 28, pp. 939–950.

    Article  CAS  PubMed  Google Scholar 

  35. Jahn, W., Steinbiss, J., and Zetsche, K., Light intensity adaptation of the phycobiliprotein content of the red alga Porphyridium, Planta, 1984, vol. 161, pp. 536–539.

    Article  CAS  PubMed  Google Scholar 

  36. Jena, J., Pradhan, N., Dash, B.P., et al., Pigment mediated biogenic synthesis of silver nanoparticles using diatom Amphora sp. and its antimicrobial activity, J. Saudi Chem. Soc., 2015, vol. 19, no. 6, pp. 661–666.

    Article  Google Scholar 

  37. Kilic, N.K., Erdem, K., and Donmez, G., Bioactive compounds produced by Dunaliella species, antimicrobial effects and optimization of the efficiency, Turk. J. Fish. Aquat. Sci., 2018, vol. 19, no. 11, pp. 923–933.

    Google Scholar 

  38. Kokou, F., Makridis, P., Kentouri, M., and Divanach, P., Antibacterial activity in microalgae cultures, Aquat. Res., 2012, vol. 43, no. 10, pp. 1520–1527.

    Article  Google Scholar 

  39. Krishnakumar, S., Bai, V.D.M., and Rajan, A., Evaluation of bioactive metabolites from halophilic microalgae Dunaliella salina by GC – MS analysis, Int. J. Pharm. Pharm. Sci., 2013, vol. 5, no. 4, pp. 296–303.

    Google Scholar 

  40. Kubota, T., Iwai, T., Sakai, K., et al., Amphidinins C–F, amphidinolide Q analogues from marine dinoflagellate Amphidinium sp., Org. Lett., 2014, vol. 16, no. 21, pp. 5624–5627.

    Article  CAS  PubMed  Google Scholar 

  41. Lazarus, S. and Bhimba, V., Antibacterial activity of marine microalgae against multidrug resistant human pathogens, Int. J. Appl. Bioeng., 2008, vol. 2, pp. 32–34.

    Google Scholar 

  42. Lauritano, C., Andersen, J.H., Hansen, E., et al., Bioactivity screening of microalgae for antioxidant, anti-inflammatory, anticancer, anti-diabetes, and antibacterial activities, Front. Mar. Sci., 2016, vol. 3, art. ID 68. https://doi.org/10.3389/fmars.2016.00068

    Article  Google Scholar 

  43. Lauritano, C., Martín, J., de la Cruz, M., et al., First identification of marine diatoms with anti-tuberculosis activity, Sci. Rep., 2018, vol. 8, art. ID 2284. https://doi.org/10.1038/s41598-018-20611-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Levy, I. and Gantt, E., Light acclimation in Porphyridium purpureum (Rhodophyta): growth, photosynthesis and phycobilisomes, J. Phycol., 1988, vol. 24, no. 4, pp. 452–458.

    Google Scholar 

  45. LewisOscar, F., Nithya, C., Alharbi, S.A., et al., Microfouling inhibition of human nosocomial pathogen Pseudomonas aeruginosa using marine cyanobacteria, Microb. Pathog., 2018, vol. 114, pp. 107–115.

    Article  CAS  PubMed  Google Scholar 

  46. Liberman, G.N., Ochbaum, G., Arad, S., and Bitton, R., The sulfated polysaccharide from a marine red microalga as a platform for the incorporation of zinc ions, Carbogydr. Polym., 2016, vol. 152, pp. 658–664.

    Article  CAS  Google Scholar 

  47. Liberman, G.N., Ochbaum, G., Bitton, R., and Arad, S., Antimicrobial hydrogels composed of chitosan and sulfated polysaccharides of red microalgae, Polymer, 2021, vol. 215, art. ID 123353. https://doi.org/10.1016/j.polymer.2020.123353

    Article  CAS  Google Scholar 

  48. Liqin, S., Wang, C., and Lei, S., Effects of light regime on extracellular polysaccharide production by Porphyridium cruentum cultured in flat plate photobioreactors, 2nd Int. Conf. Bioinf. Biomed. Eng. (ICBBE), 2008, pp. 1488–1491.

  49. Maadane, A., Merghoub, N., El Mernissi, N., et al., Antimicrobial activity of marine microalgae isolated from Moroccan coastlines, J. Microbiol. Biotechnol. Food Sci., 2017, vol. 6, no. 6, pp. 1257–1260.

    Article  CAS  Google Scholar 

  50. Maldonado, M.T., Hughes, M.P., Rue, E.L., and Wells, M.L., The effect of Fe and Cu on growth and domoic acid production by Pseudo-nitzschia multiseries and Pseudo-nitzschia australis, Limnol. Oceanogr., 2002, vol. 47, no. 2, pp. 515–526.

    Article  CAS  Google Scholar 

  51. Martins, R.F., Ramos, M.F., Herfindal, L., et al., Antimicrobial and cytotoxic assessment of marine cyanobacteria – Synechocystis and Synechococcus, Mar. Drugs, 2008, vol. 6, no. 1, pp. 1–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mayer, A.M., Rodríguez, A.D., Taglialatela-Scafati, O., and Fusetani, N., Marine pharmacology in 2009-2011: marine compounds with antibacterial, antidiabetic, antifungal, anti-inflammatory, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous systems, and other miscellaneous mechanisms of action, Mar. Drugs, 2011, vol. 11, no. 7, pp. 2510–2573.

    Article  CAS  Google Scholar 

  53. McGee, D.M., Archer, L., Smyth, T.J., et al., Bioprospecting and LED-based spectral enhancement of antimicrobial activity of microalgae isolated from the west of Ireland, Algal Res., 2020, vol. 45, art. ID 101704. https://doi.org/10.1016/j.algal.2019.101704

    Article  Google Scholar 

  54. Mendiola, J.A., Torres, C.F., Toré, A., et al., Use of supercritical CO2 to obtain extracts with antimicrobial activity from Chaetoceros muelleri microalga. A correlation with their lipidic content, Eur. Food Res. Technol., 2007, vol. 224, pp. 505–510.

    Article  CAS  Google Scholar 

  55. Mishra, B., Saxena, A., and Tiwari, A., Biosynthesis of silver nanoparticles from marine diatoms Chaetoceros sp., Skeletonema sp., Thalassiosira sp., and their antibacterial study, Biotechnol. Rep., 2020, vol. 28, art. ID e00571. https://doi.org/10.1016/j.btre.2020.e00571

    Article  Google Scholar 

  56. Mohs, R.C. and Greig, N.H., Drug discovery and development: Role of basic biological research, Alzheimer’s Dementia, 2017, vol. 3, no. 4, pp. 651–657.

    PubMed  PubMed Central  Google Scholar 

  57. Molina-Cárdenas, C.A. and Sánchez-Saavedra, M.d.P., Inhibitory effect of benthic diatom species on three aquacultures pathogenic vibrios, Algal Res., 2017, vol. 27, pp. 131–139.

    Article  Google Scholar 

  58. Montalvão, S., Demirel, Z., Devi, P., et al., Large-scale bioprospecting of cyanobacteria, micro- and macroalgae from the Aegean Sea, New Biotechnol., 2016, vol. 33, no. 3, pp. 399–406.

    Article  CAS  Google Scholar 

  59. Najdenski, H.M., Gigova, L.G., Iliev, I.I., et al., Antibacterial and antifungal activities of selected microalgae and cyanobacteria, Int. J. Food Sci. Technol., 2013, vol. 48, no. 7, pp. 1533–1540.

    Article  CAS  Google Scholar 

  60. Navarro, F., Forján, E., Vázquez, M., et al., Antimicrobial activity of the acidophilic eukaryotic microalga Coccomyxa onubensis, Phycol. Res., 2017, vol. 65, no. 1, pp. 38–43.

    Article  CAS  Google Scholar 

  61. Nishimoto, Y., Nomaguchi, T., Mori, Y., et al., The nutritional efficacy of Chlorella supplementation depends on the individual gut environment: a randomised control study, Front. Nutr., 2021, vol. 8, art. ID 648073. https://doi.org/10.3389/fnut.2021.648073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Noaman, N.H., Fattah, A., Khaleafa, M., and Zaky, S.H., Factors affecting antimicrobial activity of Synechococcus leopoliensis, Microbiol. Res., 2004, vol. 159, no. 4, pp. 395–402.

    Article  CAS  PubMed  Google Scholar 

  63. Ördög, V., Stirk, W.A., Lenobel, R., et al., Screening microalgae for some potentially useful agricultural and pharmaceutical secondary metabolites, J. Appl. Phycol., 2004, vol. 16, pp. 309–314.

    Article  Google Scholar 

  64. Osvik, R.D., Ingebrigtsen, R.A., Norrbin, M.F., et al., Adding zooplankton to the OSMAC toolkit: effect of grazing stress on the metabolic profile and bioactivity of a diatom, Mar. Drugs, 2021, vol. 19, no. 2, art. ID 87. https://doi.org/10.3390/md19020087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Pal, D., Khozin-Goldberg, I., Cohen, Z., Boussiba, S., The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsis sp., Appl. Microbiol. Biotechnol., 2011, vol. 90, pp. 1429–1441.

    Article  CAS  PubMed  Google Scholar 

  66. Pane, G., Cacciola, G., Giacco, E., et al., Assessment of the antimicrobial activity of algae extracts on bacteria responsible of external otitis, Mar. Drugs, 2015, vol. 13, no. 10, pp. 6440–6452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Prakash, S., Sasikala, S.L., Aldous, V., et al., Isolation and identification of MDR–Mycobacterium tuberculosis and screening of partially characterised antimycobacterial compounds from chosen marine microalgae, Asian Pac. J. Trop. Biomed., 2010, vol. 3, no. 8, pp. 655–661.

    Article  CAS  Google Scholar 

  68. Pramanik, A., Sundararaman, M., Das, S., et al., Isolation and characterization of cyanobacteria possessing antimicrobial activity from the Sundarbans, the world’s largest tidal mangrove forest, J. Phycol., 2011, vol. 47, no. 4, pp. 731–743.

    Article  PubMed  Google Scholar 

  69. Pratt, R., Daniels, T.C., Eiler, J.J., et al., Chlorellin, an antibacterial substance from Chlorella, Science, 1944, vol. 99, no. 2574, pp. 351–352.

    Article  CAS  PubMed  Google Scholar 

  70. Preisitsch, M., Niedermeyer, T.H.J., Heiden, S.E., et al., Cylindrofridins A–C, linear cylindrocyclophane-related alkylresorcinols from the cyanobacterium Cylindrospermum stagnale, J. Nat. Prod., 2016, vol. 79, no. 1, pp. 106–115.

    Article  CAS  PubMed  Google Scholar 

  71. Qin, J.G., D’Antignana, T., Zhang, W., and Franco, C., Discovery of antimicrobial activities of a marine diatom Thalassiosira rotula, Afr. J. Microbiol. Res., 2013, vol. 7, no. 50, pp. 5687–5696.

    Article  CAS  Google Scholar 

  72. Quijano-Scheggia, S., Barajas-Gonzalez, M., Lim, H.C., et al., The inhibitory effect of a non-yessotoxin-producing dinoflagellate, Lingulodinium polyedrum (Stein) Dodge, towards Vibrio vulnificus and Staphylococcus aureus, Rev. Biol. Trop., 2016, vol. 64, no. 2, pp. 805–816.

    Article  PubMed  Google Scholar 

  73. Rajendran, N., Karpanai, S.B., Sobana, P.P., et al., Phytochemicals, antimicrobial and antioxidant screening from five different marine microalgae, J. Chem. Pharm. Sci., 2014, vol. 2, pp. 78–85.

    Google Scholar 

  74. Raposo, M.F.J., Morais, R.M.S.C., and Morais, A.M.M.B., Bioactivity and applications of sulphated polysaccharides from marine microalgae, Mar. Drugs, 2013, vol. 11, no. 1, pp. 233–252.

    Article  PubMed  Google Scholar 

  75. Raposo, M.F.J., Morais, R.M.S.C., and Morais, A.M.M.B., Health applications of bioactive compounds from marine microalgae, Life Sci., 2013, vol. 93, no. 15, pp. 479–486.

    Article  CAS  Google Scholar 

  76. Raposo, M.F.J., Morais, R.M.S., and Morais, A.M.M.B., Influence of sulphate on the composition and antibacterial and antiviral properties of the exopolysaccharide from Porphyridium cruentum, Life Sci., 2014, vol. 101, nos. 1–2, pp. 56–63.

    Article  CAS  PubMed  Google Scholar 

  77. Raveh, A. and Carmeli, S., Antimicrobial ambiguines from the cyanobacterium Fischerella sp. collected in Israel, J. Nat. Prod., 2007, vol. 70, no. 2, pp. 196–201.

    Article  CAS  PubMed  Google Scholar 

  78. Risjani, Y., Mutmainnah, N., Manurung, P., et al., Exopolysaccharide from Porphyridium cruentum (purpureum) is not toxic and stimulates immune response against vibriosis: the assessment using zebrafish and white shrimp Litopenaeus vannamei, Mar. Drugs, 2021, vol. 19, no. 3, art. ID 133. https://doi.org/10.3390/md19030133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sánchez-Saavedra, M.d.P., Licea-Navarro, A., and Bernáldez-Sarabia, J., Evaluation of the antibacterial activity of different species of phytoplankton, Rev. Biol. Mar. Oceanogr., 2010, vol. 45, no. 3, pp. 531–536.

    Article  Google Scholar 

  80. Sang, M., Wang, M., Liu, J., et al., Effects of temperature, salinity, light intensity, and pH on the eicosapentaenoic acid production of Pinguiococcus pyrenoidosus, J. Ocean Univ. China, 2012, vol. 11, pp. 181–186.

    Article  CAS  Google Scholar 

  81. Sethubathi, G.V.B. and Prabu, V.A., Antibacterial activity of cyanobacterial species from Adirampattinam coast, southeast coast of Palk Bay, Curr. Res. J. Biol. Sci., 2010, vol. 2, no. 1, pp. 24–26.

    Google Scholar 

  82. Shalini, A., Ali, M.S., Anuradha, V., et al., GCMS analysis and in vitro antibacterial and anti-inflammatory study on methanolic extract of Thalassiosira weissflogii, Biocatal. Agric. Biotechnol., 2019, vol. 19, art. ID 101148.

    Article  Google Scholar 

  83. Sieburth, J.M., Antibiotic properties of acrylic acid, a factor in the gastrointestinal antibiosis of polar marine animals, J. Bacteriol., 1961, vol. 82, no. 1, pp. 72–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Srinivasakumar, K.P. and Rajashekhar, M., In vitro studies on bactericidal activity and sensitivity pattern of isolated marine microalgae against selective human bacterial pathogens, Indian J. Sci. Technol., 2009, vol. 2, no. 8, pp. 16–23.

    Article  CAS  Google Scholar 

  85. Sundaramanickam, A., Palanivel, S., Shekharal, S., et al., In vitro evaluation of antimicrobial activity of some selected cyanobacterial extracts against human pathogens, Int. J. Adv. Pharm., Biol. Chem., 2015, vol. 4, no. 1, pp. 36–43.

    Google Scholar 

  86. Sushanth, V.R. and Rajashekhar, M., Antioxidant and antimicrobial activities in the four species of marine microalgae isolated from Arabian Sea of Karnataka Coast, Indian J. Geo-Mar. Sci., 2015, vol. 44, no. 1, pp. 69–75.

    Google Scholar 

  87. Takagi, M., Karseno, and Yoshida, T., Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells, J. Biosci. Bioeng., 2006, vol. 101, no. 3, pp. 223–226.

    Article  CAS  PubMed  Google Scholar 

  88. Velea, S., Ilie, L., and Filipescu, L., Optimization of Porphyridium purpureum culture growth using two variables experimental design: light and sodium bicarbonate, U.P.B. Sci. Bull., Series B, 2011, vol. 73, no. 4, pp. 81–94.

    CAS  Google Scholar 

  89. Venkatesan, R., Karthikayen, R., Periyanayagi, R., et al., Antibacterial activity of the marine diatom, Rhizosolenia alata (Brightwell, 1858) against human pathogens, Res. J. Microbiol., 2007, vol. 2, pp. 98–100.

    Article  Google Scholar 

  90. Viso, A.C., Pesando, D., and Baby, C., Antibacterial and antifungal properties of some marine diatoms in culture, Bot. Mar., 1987, vol. 30, pp. 41–45.

    Article  Google Scholar 

  91. Walter, C.S. and Mahesh, R., Antibacterial and antifungal activities of some marine diatoms in culture, Indian J. Mar. Sci., 2000, vol. 29, no. 3, pp. 238–242.

    Google Scholar 

  92. Wencheng, L., Cho, K., Yamasaki, Y., et al., Photo-induced antibacterial activity of a porphyrin derivative isolated from the harmful dinoflagellate Heterocapsa circularisquama, Aquat. Toxicol., 2018, vol. 201, pp. 119–128.

    Article  CAS  PubMed  Google Scholar 

  93. Xu, J., Zhang, T., Yao, J., et al., Recent advances in chemistry and bioactivity of marine cyanobacteria Moorea species, Eur. J. Med. Chem., 2020, vol. 201, art. ID 112473. https://doi.org/10.1016/j.ejmech.2020.112473

    Article  CAS  PubMed  Google Scholar 

  94. You, T. and Barnett, S., Effect of light quality on production of extracellular polysaccharides and growth rate of Porphyridium cruentum, Biochem. Engineer. J., 2004, vol. 19, no. 3, pp. 251–258.

    Article  CAS  Google Scholar 

  95. Zea-Obando, C., Tunin-Ley, A., Turquet, J., et al., Anti-bacterial adhesion activity of tropical microalgae extracts, Molecules, 2018, vol. 23, no. 9, art. ID 2180. https://doi.org/10.3390/molecules23092180

    Article  CAS  PubMed Central  Google Scholar 

  96. Zhu, L., Zhang, X., Ji, L., et al., Changes of lipid content and fatty acid composition of Schizochytrium limacinum in response to different temperatures and salinities, Process Biochem., 2007, vol. 42, no. 2, pp. 210–214.

    Article  CAS  Google Scholar 

  97. Molina-Cárdenas, M., Sánchez-Saavedra, M.d.P., Lizárraga-Partida, M.L., Inhibition of pathogenic Vibrio by the microalgae Isochrysis galbana, J. Appl. Phycol., 2014, vol. 26, no. 6, pp. 2347–2355.

    Article  CAS  Google Scholar 

Download references

Funding

The study was supported by the Russian Science Foundation, project no. 21-74-30004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Ognistaia.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by E. Shvetsov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ognistaia, A.V., Markina, Z.V. & Orlova, T.Y. Antimicrobial Activity of Marine Microalgae. Russ J Mar Biol 48, 217–230 (2022). https://doi.org/10.1134/S1063074022040071

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063074022040071

Keywords:

Navigation