Skip to main content
Log in

Analysis of the Mutual Influence of the Microalgae Heterosigma akashiwo (Raphidophyceae) and Thalassiosira pseudonana (Bacillariophyta)

  • ORIGINAL PAPERS
  • Published:
Russian Journal of Marine Biology Aims and scope Submit manuscript

Abstract

The mutual influence of the rafidophyte microalgae Heterosigma akashiwo, which causes algal blooms, and the diatom Thalassiosira pseudonana, which is regularly present in sea waters, was studied under experimental conditions. Experiments were carried out with monocultures, monocultural filtrates, and mixed cultures of different initial concentrations. The growth and physiological state of the microalgae were assessed by flow cytometry. Both algae displayed inhibited growth in co-culture and on filtrates, but growth was suppressed to a greater extent in T. pseudonana. The fluorescence of chlorophyll a and the contents of reactive oxygen species and neutral lipids decreased in H. akashiwo cultures grown on T. pseudonana filtrate. Similar changes were noted in a T. pseudonana culture grown on H. akashiwo filtrate. It is concluded that these algae exhibit allelopathic activity in relation to each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Alemán-Nava, G.S., Cuellar-Bermudez, S.P., Cuaresma, M., et al., How to use Nile Red, a selective fluorescent stain for microalgal neutral lipids, J. Microbiol. Methods, 2016, vol. 128, pp. 74–79.

    Article  PubMed  Google Scholar 

  2. Branco, S., Menezes, M., Alves-de-Souza, C., et al., Recurrent blooms of Heterosigma akashiwo (Raphidophyceae) in the Piraquê Channel, Rodrigo de Freitas Lagoon, southeast Brazil, Braz. J. Biol., 2014, vol. 74, pp. 529–537.

    Article  CAS  PubMed  Google Scholar 

  3. Dursun, F., Taş, S., and Koray, T., Spring bloom of the raphidophycean Heterosigma akashiwo in the Golden Horn Estuary at the northeast of Sea of Marmara, Ege J. Fish. Aquat. Sci., 2016, vol. 33, pp. 201–207.

    Google Scholar 

  4. Felpeto, A.B., Śliwińska-Wilczewska, S., Klein, M., et al., Temperature-dependent impacts of allelopathy on growth, pigment, and lipid content between a subpolar strain of Synechocystis sp. CCBA MA-01 and coexisting microalgae, Hydrobiologia, 2019, vol. 835, pp. 117–128.

    Article  Google Scholar 

  5. Felpeto, A.B. and Vasconcelos, V.M., Allelopathic interactions in phytoplankton population ecology, J. Allelochem. Intercat., 2016, vol. 2, no. 2, pp. 25–34.

  6. Fernández-Herrera, L.J., Band-Schmidt, C.J., López-Cortés, D.J., et al., Allelopathic effect of Chattonella marina var. marina (Raphidophyceae) on Gymnodinium catenatum (Dinophycea), Harmful Algae, 2016, vol. 51, pp. 1–9.

    Article  PubMed  Google Scholar 

  7. Fuica, N., Rojas, X., Clément, A., et al. Ocurrencia e impacto de las FANs en la salmonicultura en el sur de Chile: Análisis del programa de monitoreo de INTESAL de Salmón Chile, Salmociencia, 2007, vol. 2, pp. 61–71.

    Google Scholar 

  8. Gomes, F., Ferdandes, E., and Lima, J.F.L.C., Fluorescence probes used for detection of reactive oxygen species, J. Biophys. Biochem. Methods, 2005, vol. 65, nos. 2–3, pp. 45–80.

    Article  CAS  Google Scholar 

  9. Guillard, R.R.L. and Ryther, J.H., Studies of marine planktonic diatoms. 1. Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran., Can. J. Microbiol., 1962, vol. 8, pp. 229–239.

    Article  CAS  PubMed  Google Scholar 

  10. Harris, A.S.D., Medlin, L.K., Lewis, J., and Jones, K.J., Thalassiosira species (Bacillariophyceae) from a Scottish sea-loch, Eur. J. Phycol., 1995, vol. 30, no. 2, pp. 117–131.

    Article  Google Scholar 

  11. Hatlenarth-Lehmann, T.H. and Gobler, C.J., Allelopathic inhibition of competing phytoplankton by North American strains of the toxic dinoflagellate, Alexandrium fundyense: Evidence from field experiments, laboratory experiments, and bloom events 2011, Harmful Algae, 2011, vol. 11, pp. 106–116.

    Article  Google Scholar 

  12. Huang, W.-W., Dong, B.-Zh., Cai, Zh.-P., and Duan, Sh.-Sh., Growth effects on mixed culture of Dunaliella salina and Phaeodactylum tricornutum under different inoculation densities and nitrogen concentrations, Afr. J. Biotechnol., 2011, vol. 10, no. 61, pp. 13164–13174.

    CAS  Google Scholar 

  13. Hulot, F. and Huisman, J., Allelopathic interactions between phytoplankton species: The roles of heterotrophic bacteria and mixing intensity, Limnol. Oceanogr., 2004, vol. 40, pp. 1424–1434.

    Article  Google Scholar 

  14. Hyka, P., Lickova, S., Přibyl, P., et al., Flow cytometry for development of biotechnological processes with microalgae, Biotechnol. Adv., 2013, vol. 31, pp. 2–16.

    Article  CAS  PubMed  Google Scholar 

  15. Jamers, A., Lenjou, M., Deraedt, P., et al., Flom cytometric analysis of the cadmium explosed green alga Chlamydomonas reinhardtii (Chlorophyceae), Eur. J. Phycol., 2009, vol. 44, pp. 541–550.

    Article  CAS  Google Scholar 

  16. Ianora, A., Matthew, G.B., Caldwell, G.S., et al., The Relevance of Marine Chemical Ecology to Plankton and Ecosystem Function: An Emerging Field, Mar. Drugs, 2011, vol. 9, no. 9, pp. 1625–1648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Leão, P.N., Teresa, M., Vasconcelos, S.D., and Vasconcelos, V.M., Allelopathic activity of cyanobacteria on green microalgae at low cell densities, Eur. J. Phycol., 2009, vol. 44, pp. 347–355.

    Article  Google Scholar 

  18. Long, M., Tallec, K., Soudant, P., et al., Allelochemicals from Alexandrium minutum induce rapid inhibition of metabolism and modify the membranes from Chaetoceros muelleri, Algal Res., 2018, vol. 35, pp. 508–518.

    Article  Google Scholar 

  19. Markina, Zh.V., Flow cytometry as a method of study unicellular algae: Development, problems, prospects), Russ. J. Mar. Biol., 2019, vol. 45, no. 5, pp. 333–340.

    Article  Google Scholar 

  20. Marshall, J.-A., de Salas, M., Tatsuya, O., and Hallegraeff, G., Superoxide production by marine microalgae, Mar. Biol., 2005, vol. 147, pp. 533–540.

    Article  CAS  Google Scholar 

  21. Mikheev, M.A., Ipatova, V.I., and Spirkina, N.E., Biotic interactions between two species of microalgae in mixed culture, Moscow Univ. Biol. Sci. Bull., 2018, vol. 73, no. 2, pp. 63–68.

    Article  Google Scholar 

  22. Pichierri, S., Accoroni, S., Pezzolesi, L., et al., Allelopathic effects of diatom filtrates on the toxic benthic dinoflagellate Ostreopsis cf. ovata, Mar. Environ. Res., 2017, vol. 131, pp. 116–122.

    Article  CAS  PubMed  Google Scholar 

  23. Poulin, R.X, Poulson-Ellestad, K.L., Roy, J.S., and Kubanek, J., Variable allelopathy among phytoplankton reflected in red tide metabolome, Harmful Algae, 2018, vol. 71, pp. 50–56.

    Article  CAS  PubMed  Google Scholar 

  24. Orlova, T.Yu. and Morozova, T.V., Resting stages of microalgae in surface sediments of Peter the Great Bay, Sea of Japan, Russ. J. Mar. Biol., 2009, vol. 35, no. 4, pp. 313–322.

    Article  Google Scholar 

  25. Orlova, T.Yu., Stonik, I.V., and Shevchenko, O.G., Flora of planktonic microalgae of Amursky Bay, Sea of Japan, Russ. J. Mar. Biol., 2009, vol. 35, no. 1, pp. 60–78.

    Article  Google Scholar 

  26. Shevchenko, O.G., Tevs, K.O., Shulkin, V.M., and Shulgina, M.A., Monitoring of phytoplankton and hydrochemical parameters of coastal waters of Russky Island (Peter the Great Bay, Sea of Japan), Russ. J. Mar. Biol., 2022, vol. 48, no. 1, pp. 44–52.

    Article  Google Scholar 

  27. Shikata, T., Yoshikawa, S., Matsubara, T., et al., Growth dynamics of Heterosigma akashiwo (Raphidophyceae) in Hakata Bay, Japan, Eur. J. Phycol., 2008, vol. 43, no. 4, pp. 395–411.

    Article  CAS  Google Scholar 

  28. Śliwińska-Wilczewska, S., Felpeto, A.B., Maculewicz, J., et al., Allelopathic activity of the picocyanobacterium Synechococcus sp. on unicellular eukaryote planktonic microalgae, Mar. Freshwater Res., 2018, vol. 69, no. 9, pp. 1472–1479. https://doi.org/10.1071/MF18024

    Article  Google Scholar 

  29. Stonik, I.V., Qualitative and quantitative composition of phytoplankton in the Zolotoi Rog Bay of the Sea of Japan, Izv. Tikhookean. Nauchno-Issled. Inst. Rybn. Khoz. Okeanogr., 2018, vol. 194, pp. 167–174.

    Google Scholar 

  30. Taylor, F.J.R., Current problems with harmful phytoplankton blooms in British Columbia waters, in Toxic Phytoplankton Blooms in the Sea, Amsterdam: Elsevier, 1993, pp. 699–704.

    Google Scholar 

  31. Ternon, E., Pavaux, A.-S., Marro, S., et al., Allelopathic interactions between the benthic toxic dinoflagellate Ostreopsis cf. ovata and a co-occurring diatom, Harmful Algae, 2018, vol. 75, pp. 35–44.

    Article  CAS  PubMed  Google Scholar 

  32. Wang, R., Xue, Q., Wang, J., et al., Effects of an allelochemical in Phaeodactylum tricornutum filtrate on Heterosigma akashiwo: Morphological, physiological and growth effects, Chemosphere, 2017, vol. 186, pp. 527–534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yamasaki, Y., Nagasoe, S., Matsubara, T., et al., Allelopathic interactions between the bacillariophyte Skeletonema costatum and the raphidophyte Heterosigma akashiwo, Mar. Ecol. Prog. Ser., 2007, vol. 339, pp. 83–92.

    Article  CAS  Google Scholar 

  34. Yamasaki, Ya., Shikata, T., Nukata, A., et al., Extracellular polysaccharide-protein complexes of a harmful alga mediate the allelopathic control it exerts within the phytoplankton community 2009, ISME J., 2009, vol. 3, pp. 808–817.

    Article  CAS  PubMed  Google Scholar 

  35. Zheng, J.-W., Li, D.-W., Yang, L., et al., Molecular exploration of algal interaction between the diatom Phaeodactylum tricornutum and the dinoflagellate Alexandrium tamarense, Algal Res., 2016, vol. 17, pp. 132–141.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

Microalgae cultures Heterosigma akashiwo (Raphidophyceae) MBRU_HAK-SR11 and Thalassiosira pseudonana MBRU_TSP-02 (Bacillariophyta) were provided by the Marine Biobank Resource Center of the NSCMB FEB RAS (http://marbank.dvo.ru).

Funding

This work was supported by a grant from the Russian Science Foundation (project no. 21-74-30004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zh. V. Markina.

Ethics declarations

Conflict of interest. The authors declare that they have no conflicts of interest.

Statement on the welfare of animals. This article does not contain a description of any research using humans and animals as subjects.

Additional information

Translated by I. Goll

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Markina, Z.V. Analysis of the Mutual Influence of the Microalgae Heterosigma akashiwo (Raphidophyceae) and Thalassiosira pseudonana (Bacillariophyta). Russ J Mar Biol 48, 353–361 (2022). https://doi.org/10.1134/S1063074022050170

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063074022050170

Keywords:

Navigation