Skip to main content
Log in

GaAs/AlAs resonant-tunneling diode for subharmonic mixers

  • Micro- and Nanoelectronic Devices
  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

A GaAs/AlAs resonant-tunneling diode is designed for use as part of a subharmonic mixer, and its prototypes are fabricated and characterized. Its current-voltage characteristics measured at room, liquid-nitrogen, or liquid-helium temperature provide evidence for its adequate performance over the entire temperature range. Its impedance is measured against frequency up to 40 GHz, on which basis an appropriate equivalent circuit is selected for the device, and its components are quantified. The operation of a subharmonic mixer incorporating the resonant-tunneling diode is simulated for a number of values of its quantum-well width. At liquid-helium temperature, adjusting the quantum-well width is predicted to make the appropriate local-oscillator power vary from 50 μW to 15 mW, while holding the conversion loss of a subharmonic mixer below 10 dB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tsu, R. and Esaki, L., Appl. Phys. Lett., 1973, vol. 22, p. 562.

    Article  Google Scholar 

  2. European Commission IST Programme: Future and Emerging Technologies, Technology Roadmap for Nanoelectronics, 2nd ed., Nov. 2000.

  3. Asada, M., Orihashi, N., and Suzuki, S., Jpn. J. Appl. Phys., 2007, vol. 46, p. 2904.

    Article  Google Scholar 

  4. Shimizu, N., Nagatsuma, T., Waho, T., Shinagawa, M., Yaita, M., and Yamamoto, M., Electron. Lett., 1995, vol. 31, p. 1695.

    Article  Google Scholar 

  5. Kidner, C., Mehdi, I., East, J.R., and Haddad, G.I., IEEE Trans. Microwave Theory Tech., 1990, vol. 38, p. 864.

    Article  Google Scholar 

  6. Li, Y.P., Zaslavsky, A., Tsui, D.C., Santos, M., and Shayegan, M., Phys. Rev. B, 1990, vol. 41, p. 8388.

    Article  Google Scholar 

  7. Blanter, Ya.M. and Büttiker, M., Phys. Rep., 2000, vol. 336, nos. 1–2, p. 1.

    Article  Google Scholar 

  8. Luryi, S., Appl. Phys. Lett., 1985, vol. 47, p. 490.

    Article  Google Scholar 

  9. Datta, S., Electronic Transport in Mesoscopic Systems, Cambridge: Cambridge Univ. Press, 1995.

    Google Scholar 

  10. Alkeev, N.V., Averin, S.V., Dorofeev, A.A., Velling, P., Khorenko, E., Prost, W., and Tegude, F.J., Fiz. Tekh. Poluprovodn. (St. Petersburg), 2007, vol. 41, p. 233 [Semiconductors (Engl. Transl.), vol. 41, p. 227].

    Google Scholar 

  11. Aleshkin, V.Ya., Reggiani, L., Alkeev, N.V., Lyubchenko, V.E., Ironside, C.N.J., Figueiredo, M.L., and Stanley, C.R., Phys. Rev. B, 2004, vol. 70, 115321.

  12. Van der Ziel, A., Noise: Sources, Characterization, Measurement, Prentice Hall, 1970.

  13. Przadka, A., Webb, K.J., Janes, D.B., Liu, H.C., and Wasilewski, Z.R., Appl. Phys. Lett., 1997, vol. 71, p. 530.

    Article  Google Scholar 

  14. Kuznetsov, V., Mendez, E., Bruno, J., and Pham, J., Phys. Rev. B, 1998, vol. 58, p. R10159.

    Article  Google Scholar 

  15. Smith, P.M. and Conn, D.R., J. Appl. Phys., 1989, vol. 66, p. 1453.

    Google Scholar 

  16. Rozanov, B.A. and Rozanov, S.B., Priemniki millimetrovykh voln (Millimeter-Wave Receivers), Moscow: Radio i Svyaz’, 1989.

    Google Scholar 

  17. Alkeev, N.V., Averin, S.V., Lyubchenko, V.E., Golant, E.I., and Pashkovskii, A.B., in 16th Int. Conf. on Microwaves, Radar and Wireless Communications, MIKON-2006, Krakow, 2006, p. 889.

  18. Tager, A.S., Elektron. Tekh., Ser. 1: Elektron. SVCh, 1987, no. 9 (403), p. 21.

  19. Tager, A.S., IMPATT Diode and Its Microwave-Technology Applications, Usp. Fiz. Nauk, 1966, vol. 90, p. 631.

    Google Scholar 

  20. Sun, J.P., Haddad, G.I., Mazumder, P., and Schulman, J.N., Proc. IEEE, 1998, vol. 86, p. 641.

    Article  Google Scholar 

  21. Obukhov, I.A., Modelirovanie perenosa zaryada v mezoskopicheskikh strukturakh (Modeling of Charge Transport in Mesoscopic Structures), Moscow: Veber, 2005.

    Google Scholar 

  22. Abramov, I.I., Goncharenko, I.A., and Kolomeitseva, N.V., Fiz. Tekh. Poluprovodn. (St. Petersburg), 2007, vol. 41, p. 1395 [Semiconductors (Engl. Transl.), vol. 41, p. 1375].

    Google Scholar 

  23. Optronics Design website: http://www.optronicsdesign.com

  24. Crosslight Software website: http://www.crosslight.com

  25. Brown, E.R., Sollner, T.C.L.G., Goodhue, W.D., and Parker, C.D., Appl. Phys. Lett., 1987, vol. 50, p. 83.

    Article  Google Scholar 

  26. Huang, C.J., Paulus, M.J., Bozada, C.A., Dudle, S.C., Evans, K.R., Stutz, C.E., Jones, R.L., and Cheney, M.E., Appl. Phys. Lett., 1987, vol. 51, p. 121.

    Article  Google Scholar 

  27. Riechert, H., Bernklau, D., Reithmaier, J.-P., and Schnell, R.D., J. Cryst. Growth, 1991, vol. 111, p. 1100.

    Article  Google Scholar 

  28. Brown, E.R., Goodhue, W.D., and Sollner, T.C.L.G., J. Appl. Phys., 1988, vol. 64, p. 1519.

    Article  Google Scholar 

  29. Brown, E.R., Sollner, T.C.G., Parker, C.D., Goodhue, W.D., and Chen, C.L., Appl. Phys. Lett., 1989, vol. 55, p. 1777.

    Article  Google Scholar 

  30. Goodhue, W.D., Sollner, T.C.L.G., Le, H.Q., Brown, E.R., and Vojak, B.A., Appl. Phys. Lett., 1986, vol. 49, p. 1086.

    Article  Google Scholar 

  31. Alkeev, N.V., Lyubchenko, V.E., Velling, P., Khorenko, E., Prost, W., and Tegude, F.J., Radiotekh. Elektron. (Moscow), 2004, vol. 49, p. 886 [J. Commun. Technol. Electron. (Engl. Transl.), vol. 49, p. 833].

    Google Scholar 

  32. Shur, M., GaAs Devices and Circuits, New York: Plenum, 1987.

    Google Scholar 

  33. Orihasni, N., Hattori, S., Suzuki, S., and Asada, M., Jpn. J. Appl. Phys., 2005, vol. 44, p. 7809.

    Article  Google Scholar 

  34. Avago Technologies website: http://www.avagotech.com

  35. Federal Research Institute of Semiconductor Devices website: http://www.niipp.ru

  36. Alkeev, N.V., Radiotekh. Elektron. (Moscow), 2003, vol. 48, p. 508 [J. Commun. Technol. Electron. (Engl. Transl.), vol. 48, p. 463].

    Google Scholar 

  37. Broekaert, T.P.E., Brar, B., van der Wagt, J.P.A., Seabaugh, A.C., Morris, F.J., Moise, T.S., Beam, E.A., and Frazier, G.A., IEEE J. Solid-State Circuits, 1998, vol. 33, p. 1342.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Alkeev.

Additional information

Original Russian Text © N.V. Alkeev, S.V. Averin, A.A. Dorofeev, N.B. Gladysheva, M.Yu. Torgashin, 2010, published in Mikroelektronika, 2010, Vol. 39, No. 5, pp. 356–365.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alkeev, N.V., Averin, S.V., Dorofeev, A.A. et al. GaAs/AlAs resonant-tunneling diode for subharmonic mixers. Russ Microelectron 39, 331–339 (2010). https://doi.org/10.1134/S1063739710050057

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739710050057

Keywords

Navigation