Skip to main content
Log in

Fast Electrochemical Micropump for Portable Drug Delivery Module

  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

Microfluidic devices are capable of precise drug delivery to the human body. For this purpose, they must be equipped with a compact pump that provides a high flow rate and precise dosing. In this paper, we present a micropump based on a fast electrochemical actuator that meets these requirements. It contains three actuators operating in the peristaltic mode. The device is fabricated from glass and silicon wafers using the standard microfabrication processes. The working part of the pump has a size of about 3 mm3, which is an order of magnitude smaller than other types of diaphragm pumps. The small size of the actuators ensures ultrahigh liquid dosing accuracy of 0.14 nL. At the same time, the high frequency of operation of the actuators makes it possible to develop a specific pumping velocity comparable to other types of pumps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Tang, W., Jiang, D., Li, Z., Zhu, L., Shi, J., Yang, J., and Xiang, N., Recent advances in microfluidic cell sorting techniques based on both physical and biochemical principles, Electrophoresis, 2019, vol. 40, no. 6, pp. 930–954. https://doi.org/10.1002/elps.201800361

    Article  Google Scholar 

  2. Xu, X., Huang, X., Sun, J., Wang, R., Yao, J., Han, W., and Yin, M., Recent progress of inertial microfluidic-based cell separation, Analyst, 2021, vol. 146, no. 23, pp. 7070–7086. https://doi.org/10.1039/D1AN01160J

    Article  Google Scholar 

  3. Fujii, S.I., Tokuyama, T., Abo, M., and Okubo, A., Fluorometric determination of sulfite and nitrite in aqueous samples using a novel detection unit of a microfluidic device, Anal. Sci., 2004, vol. 20, no. 1, pp. 209–212. https://doi.org/10.2116/analsci.20.209

    Article  Google Scholar 

  4. Bodor, R., Madajová, V., Kaniansky, D., Masar, M., Jöhnck, M., and Stanislawski, B., Isotachophoresis and isotachophoresis-zone electrophoresis separations of inorganic anions present in water samples on a planar chip with column-coupling separation channels and conductivity detection, J. Chromatogr., A, 2001, vol. 916, nos. 1–2, pp. 155–165. https://doi.org/10.1016/S0021-9673(00)01080-3

    Article  Google Scholar 

  5. Garcia-Cordero, J.L. and Maerkl, S.J., Microfluidic systems for cancer diagnostics, Curr. Opin. Biotechnol., 2020, vol. 65, pp. 37–44. https://doi.org/10.1016/j.copbio.2019.11.022

    Article  Google Scholar 

  6. Luan, Q., Macaraniag, C., Zhou, J., and Papautsky, I., Microfluidic systems for hydrodynamic trapping of cells and clusters, Biomicrofluidics, 2020, vol. 14, no. 3, p. 031502. https://doi.org/10.1063/5.0002866

    Article  Google Scholar 

  7. Riahi, R., Tamayol, A., Shaegh, S.A.M., Ghaemmaghami, A.M., Dokmeci, M.R., and Khademhosseini, A., Microfluidics for advanced drug delivery systems, Curr. Opin. Chem. Eng., 2015, vol. 7, pp. 101–112. https://doi.org/10.1016/j.coche.2014.12.001

    Article  Google Scholar 

  8. Pons-Faudoa, F.P., Ballerini, A., Sakamoto, J., and Grattoni, A., Advanced implantable drug delivery technologies: transforming the clinical landscape of therapeutics for chronic diseases, Biomed. Microdevices, 2019, vol. 21, no. 2, pp. 1–22. https://doi.org/10.1007/s10544-019-0389-6

    Article  Google Scholar 

  9. Wang, Y.N. and Fu, L.M., Micropumps and biomedical applications—A review, Microelectron. Eng., 2018, vol. 195, pp. 121–138. https://doi.org/10.1016/j.mee.2018.04.008

    Article  Google Scholar 

  10. Gidde, R.R., Pawar, P.M., Ronge, B.P., and Dhamgaye, V.P., Design optimization of an electromagnetic actuation based valveless micropump for drug delivery application, Microsyst. Technol., 2019, vol. 25, no. 2, pp. 509–519. https://doi.org/10.1007/s00542-018-3987-y

    Article  Google Scholar 

  11. Pawinanto, R.E., Yunas, J., Alwani, A., Indah, N., and Alva, S., Electromagnetic micro-actuator with silicon membrane for fluids pump in drug delivery system, Int. J. Mech. Eng. Rob. Res., 2019, vol. 8, no. 4, pp. 576–579. https://doi.org/10.18178/ijmerr.8.4.576-579

    Article  Google Scholar 

  12. Conrad, H., Schenk, H., Kaiser, B., Langa, S., Gaudet, M., Schimmanz, K., and Lenz, M., A small-gap electrostatic micro-actuator for large deflections, Nat. Commun., 2015, vol. 6, p. 10078. https://doi.org/10.1038/ncomms10078

    Article  Google Scholar 

  13. Lee, I., Hong, P., Cho, C., Lee, B., Chun, K., and Kim, B., Four-electrode micropump with peristaltic motion, Sens. Actuator A: Phys., 2016, vol. 245, pp. 19–25. https://doi.org/10.1016/j.sna.2016.04.010

    Article  Google Scholar 

  14. Chia, B.T., Liao, H.H., and Yang, Y.J., A novel thermo-pneumatic peristaltic micropump with low temperature elevation on working fluid, Sens. Actuator A: Phys., 2011, vol. 165, no. 1, pp. 86–93. https://doi.org/10.1016/j.sna.2010.02.018

    Article  Google Scholar 

  15. Sassa, F., Al-Zain, Y., Ginoza, T., Miyazaki, S., and Suzuki, H., Miniaturized shape memory alloy pumps for stepping microfluidic transport, Sens. Actuators B: Chem., 2012, vol. 165, no. 1, pp. 157–163. https://doi.org/10.1016/j.snb.2011.12.085

    Article  Google Scholar 

  16. Pečar, B., Križaj, D., Vrtačnik, D., Resnik, D., Dolžan, T., and Možek, M., Piezoelectric peristaltic micropump with a single actuator, J. Micromech. Microeng., 2014, vol. 24, no. 10, p. 105010. https://doi.org/10.1088/0960-1317/24/10/105010

    Article  Google Scholar 

  17. Sayar, E. and Farouk, B., Multifield analysis of a piezoelectric valveless micropump: Effects of actuation frequency and electric potential, Smart Mater. Struct., 2012, vol. 21, no. 7, p. 075002. https://doi.org/10.1088/0964-1726/21/7/075002

    Article  Google Scholar 

  18. Kim, H., Hwang, H., Baek, S., and Kim, D., Design, fabrication and performance evaluation of a printed-circuit-board microfluidic electrolytic pump for lab-on-a-chip devices, Sens. Actuator A: Phys., 2018, vol. 277, pp. 73–84. https://doi.org/10.1016/j.sna.2018.04.042

    Article  Google Scholar 

  19. Geipel, A., Goldschmidtboeing, F., Jantscheff, P., Esser, N., Massing, U., and Woias, P., Design of an implantable active microport system for patient specific drug release, Biomed. Microdevices, 2008, vol. 10, pp. 469–478. https://doi.org/10.1007/s10544-007-9147-2

    Article  Google Scholar 

  20. Yi, Y., Chiao, M., and Wang, B., An electrochemically actuated drug delivery device with in-situ dosage sensing, Smart Mater. Struct., 2021, vol. 30, no. 5, p. 055003. https://doi.org/10.1088/1361-665X/abee34

    Article  Google Scholar 

  21. Cobo, A., Sheybani, R., Tu, H., and Meng, E., A wireless implantable micropump for chronic drug infusion against cancer, Sens. Actuator A: Phys., 2016, vol. 239, pp. 18–25. https://doi.org/10.1016/j.sna.2016.01.001

    Article  Google Scholar 

  22. Uvarov, I.V., Lokhanin, M.V., Postnikov, A.V., Melenev, A.E., and Svetovoy, V.B., Electrochemical membrane microactuator with a millisecond response time, Sens. Actuator B: Chem., 2018, vol. 260, pp. 12–20. https://doi.org/10.1016/j.snb.2017.12.159

    Article  Google Scholar 

  23. Svetovoy, V.B., Spontaneous chemical reactions between hydrogen and oxygen in nanobubbles, Curr. Opin. Colloid Interface Sci., 2021, vol. 52, p. 101423. https://doi.org/10.1016/j.cocis.2021.101423

    Article  Google Scholar 

  24. Uvarov, I.V. and Svetovoy, V.B., Nanoreactors in action for a durable microactuator using spontaneous combustion of gases in nanobubbles, Sci. Rep., 2022, vol. 12, no. 1, p. 20895. https://doi.org/10.1038/s41598-022-25267-2

    Article  Google Scholar 

  25. Shlepakov, P.S., Uvarov, I.V., and Svetovoy, V.B., Ruthenium as an electrode material for the fast electrochemical actuator, Nauchn.-Tekh. Ved. S.-Peterb. Gos. Politekh. Univ. Fiz.-Mat. Nauki, 2022, vol. 15, no. 3.2, pp. 280–284. https://doi.org/10.18721/JPM.153.351

  26. Zhao, B., Cui, X., Ren, W., Xu, F., Liu, M., and Ye, Z.-G., A controllable and integrated pump-enabled microfluidic chip and its application in droplets generating, Sci. Rep., 2017, vol. 7, p. 11319. https://doi.org/10.1038/s41598-017-10785-1

    Article  Google Scholar 

  27. Uvarov, I.V., Melenev, A.E., Selyukov, R.V., and Svetovoy, V.B., Improving the performance of the fast electrochemical actuator, Sens. Actuator A: Phys., 2020, vol. 315, p. 112346. https://doi.org/10.1016/j.sna.2020.112346

    Article  Google Scholar 

  28. Postnikov, A.V., Uvarov, I.V., Penkov, N.V., and Svetovoy, V.B., Collective behavior of bulk nanobubbles produced by alternating polarity electrolysis, Nanoscale, 2018, vol. 10, no. 1, pp. 428–435. https://doi.org/10.1039/C7NR07126D

    Article  Google Scholar 

  29. Yi, Y., Buttner, U., Carreno, A.A., Conchouso, D., and Foulds, I.G., A pulsed mode electrolytic drug delivery device, J. Micromech. Microeng., 2015, vol. 25, no. 10, p. 105011. https://doi.org/10.1088/0960-1317/25/10/105011

    Article  Google Scholar 

  30. Svetovoy, V.B., Sanders, R.G., Lammerink, T.S., and Elwenspoek, M.C., Combustion of hydrogen-oxygen mixture in electrochemically generated nanobubbles, Phys. Rev. E, 2011, vol. 84, no. 3, p. 035302. https://doi.org/10.1103/PhysRevE.84.035302

    Article  Google Scholar 

  31. Stout, J.M., Baumgarten, T.E., Stagg, G.G., and Hawkins, A.R., Nanofluidic peristaltic pumps made from silica thin films, J. Micromech. Microeng., 2019, vol. 30, no. 1, p. 015004. https://doi.org/10.1088/1361-6439/ab4cc9

    Article  Google Scholar 

  32. Forouzandeh, F., Arevalo, A., Alfadhel, A., and Borkholder, D.A., A review of peristaltic micropumps, Sens. Actuator A: Phys., 2021, vol. 326, p. 112602. https://doi.org/10.1016/j.sna.2021.112602

    Article  Google Scholar 

  33. Tanaka, Y., A peristaltic pump integrated on a 100% glass microchip using computer controlled piezoelectric actuators, Micromachines, 2014, vol. 5, no. 2, pp. 289–299. https://doi.org/10.3390/mi5020289

    Article  Google Scholar 

  34. Jeong, O.C. and Konishi, S., Fabrication of a peristaltic micro pump with novel cascaded actuators, J. Micromech. Microeng., 2008, vol. 18, no. 2, p. 025022. https://doi.org/10.1088/0960-1317/18/2/025022

    Article  Google Scholar 

  35. Uvarov, I.V., Melenev, A.E., Lokhanin, M.V., Naumov, V.V., and Svetovoy, V.B., A fast electrochemical actuator in the non-explosive regime, J. Micromech. Microeng., 2019, vol. 29, no. 11, p. 114001. https://doi.org/10.1088/1361-6439/ab3bde

    Article  Google Scholar 

  36. Uvarov, I.V., Melenev, A.E., and Svetovoy, V.B., Fast electrochemical actuator with Ti electrodes in the current stabilization regime, Micromachines, 2022, vol. 13, no. 2, p. 283. https://doi.org/10.3390/mi13020283

    Article  Google Scholar 

  37. Dumont-Fillon, D., Tahriou, H., Conan, C., and Chappel, E., Insulin micropump with embedded pressure sensors for failure detection and delivery of accurate monitoring, Micromachines, 2014, vol. 5, no. 4, pp. 1161–1172. https://doi.org/10.3390/mi5041161

    Article  Google Scholar 

  38. Spieth, S., Schumacher, A., Holtzman, T., Rich, P.D., Theobald, D.E., Dalley, J.W., and Zengerle, R., An intra-cerebral drug delivery system for freely moving animals, Biomed. Microdevices, 2012, vol. 14, no. 5, pp. 799–809. https://doi.org/10.1007/s10544-012-9659-2

    Article  Google Scholar 

  39. Mousoulis, C., Ochoa, M., Papageorgiou, D., and Z-iaie, B., A skin-contact-actuated micropump for transdermal drug delivery, IEEE Trans. Biomed. Eng., 2011, vol. 58, no. 5, pp. 1492–1498. https://doi.org/10.1109/TBME.2011.2113347

    Article  Google Scholar 

  40. Zhang, Z., Zhao, P., Xiao, G., Watts, B.R., and Xu, C., Sealing SU-8 microfluidic channels using PDMS, Biomicrofluidics, 2011, vol. 5, no. 4, p. 046503. https://doi.org/10.1063/1.3659016

    Article  Google Scholar 

  41. Uvarov, I.V., Shlepakov, P.S., Melenev, A.E., Ma, K., Svetovoy, V.B., and Krijnen, G.J., A peristaltic micropump based on the fast electrochemical actuator: Design, fabrication, and preliminary testing, Actuators, 2021, vol. 10, no. 3, p. 62. https://doi.org/10.3390/act10030062

    Article  Google Scholar 

  42. Golishnikov, A.A., Kostyukov, D.A., and Putrya, M.G., Research and development of deep anisotropic plasma silicon etching process to form MEMS structures, Russ. Microelectron., 2012, vol. 41, no. 7, pp. 365–369. https://doi.org/10.1134/S1063739712070062

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, grant no. 18-79-10038.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. V. Uvarov or P. S. Shlepakov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uvarov, I.V., Shlepakov, P.S., Abramychev, A.M. et al. Fast Electrochemical Micropump for Portable Drug Delivery Module. Russ Microelectron 52, 186–194 (2023). https://doi.org/10.1134/S1063739723700397

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739723700397

Keywords:

Navigation