Skip to main content
Log in

Assessment of Tracks of Resonance Frequencies of the Vocal Tract

  • ACOUSTIC SIGNALS PROCESSING. COMPUTER SIMULATION
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

A new method for estimating formant frequency tracks of the vocal tract for arbitrary speech segments is proposed. The method uses the ratio of two Fourier transforms of a speech signal with special exponential-type windows depending on some parameter. This ratio is used for specific points in time and is considered as a function of frequency and parameter. By analyzing, for several parameter values, the distribution of minimum points (in terms of frequency) for the phase of this ratio and/or a similar distribution of extreme points for its amplitude, it is possible to estimate formant frequencies from the peaks of these distributions. A mathematical study is presented that substantiates this approach. A series of numerical experiments were carried out on the processing of synthetic and real speech signals, which confirmed the performance capabilities of the proposed formant evaluation method. In particular, in experiments with synthesized vowels, it was found that the error in estimating their resonance frequencies is small and stable with respect to additive noise up to a signal-to-noise ratio of 5 dB. For real speech, the method makes it possible to calculate the formant frequency tracks for both sounds with vocal excitation and for voiceless fricatives, aspirated plosives, and whispered speech.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

REFERENCES

  1. K. N. Stevens, Acoustic Phonetics (MIT Press, 1998).

    Google Scholar 

  2. V. N. Sorokin, A. S. Leonov, I. S. Makarov, and A. I. Tsyplikhin, in Proc. InterSpeech-2005 (Lisbon, Sept. 4–8, 2005), p. 3209.

  3. V. N. Sorokin, Speech Processes (Narodnoe obrazovanie, Moscow, 2012) [in Russian].

  4. Th. Sreenivas and R. J. Niederjohn, IEEE Trans. Signal Process. 40 (2), 282 (1992).

    Article  ADS  Google Scholar 

  5. V. N. Sorokin and V. P. Trifonenkov, Acoust. Phys. 42 (3), 368 (1996).

    ADS  Google Scholar 

  6. A. S. Leonov, I. S. Makarov, and V. N. Sorokin, Acoust. Phys. 55 (6), 876 (2009).

    Article  ADS  Google Scholar 

  7. D. Vakman, IEEE Trans. Signal Process. 44 (4), 791 (1996).

    Article  ADS  Google Scholar 

  8. J. D. Markel and A. H. Gray, Jr., Linear Prediction of Speech (Springer, 1976; Svyaz’, Moscow, 1980).

  9. B. Yegnanarayana, J. Acoust. Soc. Am. 63, 1638 (1978).

    Article  ADS  Google Scholar 

  10. A. S. Leonov and V. N. Sorokin, Inf. Protsessy 21 (2), 125 (2021).

    Google Scholar 

  11. V. N. Sorokin and A. S. Leonov, Acoust. Phys. 68 (2), 187 (2022).

    Article  ADS  Google Scholar 

  12. D. H. Raab, J. Acoust. Soc. Am. 33, 137 (1961).

    Article  ADS  Google Scholar 

  13. L. L. Elliot, J. Acoust. Soc. Am. 34, 1116 (1962).

    Article  ADS  Google Scholar 

  14. H. Babkoff and S. Sutton, J. Acoust. Soc. Am. 44, 1373 (1968).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. D. M. Green, J. Acoust. Soc. Am. 54, 373 (1973).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. H. Hermansky and N. Morgan, IEEE Trans. Speech Audio Process. 2 (4), 578 (1994).

    Article  Google Scholar 

  17. B. Yegnanarayana, J. Acoust. Soc. Am. 151 (3), 2181 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. B. Yegnanarayana, J. Acoust. Soc. Am. 152 (3), 1721 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. V. N. Sorokin and D. N. Chepelev, Acoust. Phys. 51 (4), 457 (2005).

    Article  ADS  Google Scholar 

Download references

Funding

The work of A.S.Leonov was supported by the Program for Improving Competitiveness of the National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), project no. 02.a03.21.0005 of August 27, 2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Sorokin.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

APPENDIX

APPENDIX

Here we present the derivation of the formulas for the functions \(A(\omega ,r),\,\,\Phi (\omega ,r)\), as well as \(A(\omega )\) and \(\Phi (\omega )\) used in the proposed method of formant analysis.

We denote designate \(y(r,\omega )(t) = {{S}_{r}}(\omega ,t)\), where the function \({{S}_{r}}(\omega ,t)\) is determined by formula (1). This notation emphasizes that this value depends on time, and on quantities \(r,\omega \), it also depends on the parameters. In addition to frequency ω, we use “close” frequencies \(\omega + \delta \omega \) (\(\left| {\delta \omega } \right| \ll \omega \)). We determine the relation

$$\begin{gathered} \alpha (r,\omega )(t) = \frac{{y(r,\omega + \delta \omega )(t)}}{{y(r,\omega )(t)}} = 1 + \frac{{\Delta y}}{y}, \\ \Delta y = y(r,\omega + \delta \omega ) - y(r,\omega ). \\ \end{gathered} $$

Then, taking into account the “smallness” of quantity \(\delta \omega \) and formula (1), we obtain

$$\begin{gathered} \Delta y = \,y(r,\omega + \delta \omega ) - y(r,\omega ) \approx \frac{{\partial y}}{{\partial \omega }}(r,\omega )\delta \omega \\ = \delta \omega \int\limits_0^\infty {{{W}_{r}}(t - \tau )x(\tau )( - j\tau ){{e}^{{ - j\omega \tau }}}d\tau } \\ = j\delta \omega \int\limits_0^\infty {{{W}_{r}}(t - \tau )x(\tau )(t - \tau ){{e}^{{ - j\omega \tau }}}d\tau } \\ - \,\,j(\delta \omega )t\int\limits_0^\infty {{{W}_{r}}(t - \tau )x(\tau ){{e}^{{ - j\omega \tau }}}d\tau } \\ = j\delta \omega \left( {\int\limits_0^\infty {{{W}_{{1r}}}(t - \tau )x(\tau ){{e}^{{ - j\omega \tau }}}d\tau } } \right. \\ \left. { - \,\,t\int\limits_0^\infty {{{W}_{r}}(t - \tau )x(\tau ){{e}^{{ - j\omega \tau }}}d\tau } } \right), \\ \end{gathered} $$

where \({{W}_{{1r}}}(z) = z{{W}_{r}}(z)\) Hence

$$\begin{gathered} \alpha (r,\omega )(t) = 1 + \frac{{\Delta y}}{y} \approx 1 - j\delta \omega t \\ + \,\,j\delta \omega \frac{{\int\limits_0^\infty {{{W}_{{1r}}}(t - \tau )x(\tau ){{e}^{{ - j\omega \tau }}}d\tau } }}{{\int\limits_0^\infty {{{W}_{r}}(t - \tau )x(\tau ){{e}^{{ - j\omega \tau }}}d\tau } }} \\ = 1 - j\delta \omega t + j\delta \omega \frac{{\int\limits_0^t {(t - \tau ){{e}^{{ - (1 + r)(t - \tau )}}}x(\tau ){{e}^{{ - j\omega \tau }}}d\tau } }}{{\int\limits_0^t {{{e}^{{ - (1 + r)(t - \tau )}}}x(\tau ){{e}^{{ - j\omega \tau }}}d\tau } }} \\ = 1 - j\delta \omega \frac{{\int\limits_0^t {\tau {{e}^{{ - (1 + r)(t - \tau )}}}x(\tau ){{e}^{{ - j\omega \tau }}}d\tau } }}{{\int\limits_0^t {{{e}^{{ - (1 + r)(t - \tau )}}}x(\tau ){{e}^{{ - j\omega \tau }}}d\tau } }}. \\ \end{gathered} $$

In what follows we will be interested in the quantity \({{A}_{\alpha }}(r,\omega ,t) = ln\left| {\alpha (r,\omega )(t)} \right|\) and phase \({{\Phi }_{\alpha }}(r,\omega ,t)\) relationship \(\alpha (r,\omega )(t)\). For brevity, we call these quantities the amplitude and phase functions associated with the relation \(\alpha (r,\omega )(t)\). To find them, we use the formula

$$\begin{gathered} \ln \alpha (r,\omega )(t) = ln\left| {\alpha (r,\omega )(t)} \right| + j{{\Phi }_{\alpha }}(r,\omega ,t) \\ = {{A}_{\alpha }}(r,\omega ,t) + j{{\Phi }_{\alpha }}(r,\omega ,t). \\ \end{gathered} $$

Then, under the conditions \(\left| {\delta \omega } \right|t \ll 1,\,\) \(\left| {\delta \omega } \right| \ll \omega \), i.e., for \(\left| {\frac{{\Delta y}}{y}} \right| \ll 1\), we have

$$\begin{gathered} \ln \alpha (r,\omega )(t) = ln\left( {1 + \frac{{\Delta y}}{y}} \right) \approx \frac{{\Delta y}}{y} \Rightarrow \\ {{A}_{\alpha }}(r,\omega ,t) \approx \operatorname{Re} \left\{ {\frac{{\Delta y}}{y}} \right\},\,\,\,{{\Phi }_{\alpha }}(r,\omega ,t) \approx \operatorname{Im} \left\{ {\frac{{\Delta y}}{y}} \right\}. \\ \end{gathered} $$

Hence,

$$\begin{gathered} {{A}_{\alpha }}(r,\omega ,t) \approx - \delta \omega \operatorname{Re} \left\{ {j\frac{{\int\limits_0^t {\tau {{e}^{{ - (1 + r)(t - \tau )}}}x(\tau ){{e}^{{ - j\omega \tau }}}d\tau } }}{{\int\limits_0^t {{{e}^{{ - (1 + r)(t - \tau )}}}x(\tau ){{e}^{{ - j\omega \tau }}}d\tau } }}} \right\}, \\ {{\Phi }_{\alpha }}(r,\omega ,t) \approx - \delta \omega \operatorname{Im} \left\{ {j\frac{{\int\limits_0^t {\tau {{e}^{{(1 + r)\tau }}}x(\tau ){{e}^{{ - j\omega \tau }}}d\tau } }}{{\int\limits_0^t {{{e}^{{(1 + r)\tau }}}x(\tau ){{e}^{{ - j\omega \tau }}}d\tau } }}} \right\}. \\ \end{gathered} $$

The amplitude and phase functions associated with \(\alpha (r,\omega )(t)\), for an amplitude-limited signal \(x(t)\) stabilize at \(t \to \infty \); i.e., as we say below, at the end of the speech segment:

$$\begin{gathered} A(\omega ,r) = ln\left| {\alpha (r,\omega )(\infty )} \right| = - \delta \omega \operatorname{Re} \left\{ {U(\omega ,r)} \right\}, \\ \Phi (\omega ,r) = {{\Phi }_{\alpha }}(r,\omega ,\infty ) = - \delta \omega \operatorname{Im} \left\{ {U(\omega ,r)} \right\}, \\ \end{gathered} $$
(A1)

where

$$\begin{gathered} U(\omega ,r) \\ = j\left\{ {\int\limits_0^\infty {\tau {{e}^{{(1 + r)\tau }}}x(\tau ){{e}^{{ - j\omega \tau }}}d\tau } } \right\}{{\left\{ {\int\limits_0^\infty {{{e}^{{(1 + r)\tau }}}x(\tau ){{e}^{{ - j\omega \tau }}}d\tau } } \right\}}^{{ - 1}}}. \\ \end{gathered} $$
(A2)

Expressions (A1) and (A2) will be used for formant analysis of general speech signals \(x(t)\). A prerequisite for this is a numerical study of their behavior for different \(r \leqslant - 1\) for simple signals (see Section 3), as well as an analytical study of their limiting values \(A(\omega )\) and \(\Phi (\omega )\) for \(r \to - 1\); i.e., quantities

$$\begin{gathered} A(\omega ) = {{A}_{\alpha }}( - 1,\omega ,\infty ) \approx \delta \omega \operatorname{Re} \left\{ {U(\omega , - 1)} \right\} \\ = \delta \omega \operatorname{Re} \left\{ { - j\frac{{\int\limits_0^\infty {\tau x(\tau ){{e}^{{ - j\omega \tau }}}d\tau } }}{{\int\limits_0^\infty {x(\tau ){{e}^{{ - j\omega \tau }}}d\tau } }}} \right\} = \delta \omega \operatorname{Re} \left\{ {\frac{{F'[x](\omega )}}{{F[x](\omega )}}} \right\}, \\ \end{gathered} $$
$$\begin{gathered} \Phi (\omega ) = {{\Phi }_{\alpha }}( - 1,\omega ,\infty ) \approx \delta \omega \operatorname{Im} \left\{ {U(\omega , - 1)} \right\} \\ = \delta \omega \operatorname{Im} \left\{ {\frac{{F{\kern 1pt} '[x](\omega )}}{{F[x](\omega )}}} \right\} = \delta \omega \operatorname{Im} \left\{ {\left[ {\ln F[x](\omega )} \right]{\kern 1pt} '} \right\}. \\ \end{gathered} $$

Here, \(F[x](\omega ) = \int_0^\infty {x(\tau ){{e}^{{ - j\omega \tau }}}d\tau } \) is the Fourier transform of the signal. This study is presented in Section 3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leonov, A.S., Sorokin, V.N. Assessment of Tracks of Resonance Frequencies of the Vocal Tract. Acoust. Phys. 69, 871–883 (2023). https://doi.org/10.1134/S1063771023601140

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771023601140

Keywords:

Navigation