Skip to main content
Log in

Density profiles in molecular cloud cores associated with high-mass star-forming regions

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

Radial density profiles for the sample of dense cores associated with high-mass star-forming regions from southern hemisphere have been derived using the data of observations in continuum at 250 GHz. Radial density profiles for the inner regions of 16 cores (at distances ≲0.2−0.8 pc from the center) are close on average to the ρr −α dependence, where α = 1.6 ± 0.3. In the outer regions density drops steeper. An analysis with various hydrostatic models showed that the modified Bonnor-Ebertmodel, which describes turbulent sphere confined by external pressure, is preferable compared with the logotrope and polytrope models practically in all cases. With a help of the Bonnor-Ebert model, estimates of central density in a core, non-thermal velocity dispersion and core size are obtained. The comparison of central densities with the densities derived earlier from the CS modeling reveals differences in several cases. The reasons of such differences are probably connected with the presence of density inhomogenities on the scales smaller than the telescope beam. In most cases non-thermal velocity dispersions are in agreement with the values obtained from molecular line observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. H. Shu, F. C. Adams, and S. Lizano, Ann. Rev. Astron. Astrophys. 25, 23 (1987).

    Article  ADS  Google Scholar 

  2. C. F. McKee and E. V. Ostriker, Ann. Rev. Astron. Astrophys. 45, 565 (2007).

    Article  ADS  Google Scholar 

  3. W. B. Bonnor, Monthly Not. Roy. Astron. Soc. 116, 351 (1956).

    MathSciNet  ADS  Google Scholar 

  4. R. Ebert, Zeitschrift für Astrophysik 37, 217 (1955).

    MATH  ADS  Google Scholar 

  5. J. Alves, C. J. Lada, and E. A. Lada, Nature 409, 159 (2001).

    Article  ADS  Google Scholar 

  6. N. J. Evans II, J. M.C. Rawlings, Y. L. Shirley, and L. G. Mundy, Astrophys. J. 557, 193 (2001).

    Article  ADS  Google Scholar 

  7. R. Kandori, Y. Nakajima, M. Tamura, et al., Astron. J. 130, 2166 (2005).

    Article  ADS  Google Scholar 

  8. P. C. Myers, Astrophys. J. 623, 280 (2005).

    Article  ADS  Google Scholar 

  9. Sh.-P. Lai, T. Velusamy, W. D. Langer, and T. B.H. Kuiper, Astron. J. 126, 311 (2003).

    Article  ADS  Google Scholar 

  10. J. Ballesteros-Paredes, R. Klessen, M.-M. MacLow, and E. Vazquez-Semadeni, Protostars and Planets V (Univ. of Arizona Press, 2007), p. 63.

  11. J. Ballesteros-Paredes, R. Klessen, and E. Vazquez-Semadeni, Astrophys. J. 592, 188 (2003).

    Article  ADS  Google Scholar 

  12. P. Maloney, Astrophys. J. 334, 761 (1988).

    Article  ADS  Google Scholar 

  13. C. F. McKee and J. C. Tan, Astrophys. J. 585, 850 (2003).

    Article  ADS  Google Scholar 

  14. D. E. McLaughlin and R. E. Pudritz, Astrophys. J. 469, 194 (1996).

    Article  ADS  Google Scholar 

  15. R. B. Larson, Monthly Not. Roy. Astron. Soc. 194, 809 (1981).

    ADS  Google Scholar 

  16. P. Caselli and P. C. Myers, Astrophys. J. 446, 686 (1995).

    Article  Google Scholar 

  17. L. Pirogov, I. Zinchenko, P. Caselli, et al., Astron. Astrophys. 405, 639 (2003).

    Article  ADS  Google Scholar 

  18. Y. P. Viala and Gp. Horedt, Astron.Astrophys. 33, 195 (1974).

    ADS  Google Scholar 

  19. W. H. McCrea, Monthly Not. Roy. Astron. Soc. 117, 562 (1957).

    MATH  MathSciNet  ADS  Google Scholar 

  20. C. L. Curry and C. F. McKee, Astrophys. J. 528, 734 (2000)

    Article  ADS  Google Scholar 

  21. C. F. McKee and J. H. Holliman, Astrophys. J. 522, 313 (1999).

    Article  ADS  Google Scholar 

  22. C. J. Lada, J. Alves, and E. A. Lada, Astrophys. J. 512, 250 (1999).

    Article  ADS  Google Scholar 

  23. L. Pirogov, I. Zinchenko, P. Caselli, and L. E. B. Johansson, Astron. Astrophys. 461, 523 (2007).

    Article  ADS  Google Scholar 

  24. I. Zinchenko, K. Mattila, and M. Toriseva, M., Astron. Astrophys. Suppl. Ser. 111, 95 (1995).

    ADS  Google Scholar 

  25. J. Brand and L. Blitz, Astron. Astrophys. 275, 67 (1993).

    ADS  Google Scholar 

  26. M. Juvela, Astron. Astrophys. Suppl. Ser. 118, 191 (1996).

    Article  ADS  Google Scholar 

  27. T. Neckel, Astron. Astrophys. 69, 51 (1978).

    ADS  Google Scholar 

  28. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in Fortran (Cambridge Univ. Press, 1992), p. 77.

  29. F. C. Adams, Astrophys. J. 382, 544 (1991).

    Article  ADS  Google Scholar 

  30. S. D. Doty and C. M. Leung, Astrophys. J. 424, 729 (1994).

    Article  ADS  Google Scholar 

  31. K. E. Mueller, Y. L. Shirley, N. J. Evans II, and H. R. Jacobson, Astrophys. J. Suppl. Ser. 143, 469 (2002).

    Article  ADS  Google Scholar 

  32. H. Beuther, P. Schilke, K. M. Menten, et al., Astrophys. J. 566, 945 (2002).

    Article  ADS  Google Scholar 

  33. J. Hatchell and F. F. S. van der Tak, Astron. Astrophys. 409, 589 (2003).

    Article  ADS  Google Scholar 

  34. S. J. Williams, G. A. Fuller, and T. K. Sridharan, Astron. Astrophys. 434, 257 (2005).

    Article  ADS  Google Scholar 

  35. V. Ossenkopf and T. Henning, Astron. Astrophys. 291, 943 (1994).

    ADS  Google Scholar 

  36. F. Motte, P. André, and R. Neri, Astron. Astrophys. 336, 150 (1998).

    ADS  Google Scholar 

  37. L. Pirogov, Astron. Astrophys. 348, 600 (1999).

    ADS  Google Scholar 

  38. L. E. Pirogov and I. I. Zinchenko, Astron. Reports 52, 963 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. E. Pirogov.

Additional information

Original Russian Text © L.E. Pirogov, 2009, published in Astronomicheskiĭ Zhurnal, 2009, Vol. 86, No. 12, pp. 1206–1215.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pirogov, L.E. Density profiles in molecular cloud cores associated with high-mass star-forming regions. Astron. Rep. 53, 1127–1135 (2009). https://doi.org/10.1134/S1063772909120051

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772909120051

Keywords

Navigation