Skip to main content
Log in

Detection of new emerging magnetic flux from the topology of SOHO/MDI magnetograms

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

A topological method for detecting the new emergence of magnetic flux using SOHO/MDI magnetograms of the full solar disk is proposed. This method uses the number of pixels in the image that can be distinguished from a specified value to within a predetermined threshold (the number of disconnected components). We study more than ten very powerful active regions (ARs) with very high flare activity and show that the number of disconnected components increases directly before the development of a series of M and X flares, or accompanies this process. This behaviour is evident not only when there is an explicit emergence of a new flux and a series of fast flares, such as in AR 9236 (November 2000), but also in groups with many non-stationary processes developing along a neutral line of the large-scale magnetic field. We also discuss the possibility of using the obtained results for flare prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. M. Grigoriev, L. V. Ermakova, and A. I. Khlystova, Astron. Zh. 86, 935 (2009) [Astron. Rep. 53, 869 (2009)].

    Google Scholar 

  2. L. M. Green, P. Démoulin, C. H. Mandrini, and L. Van Driel-Gesztelyi, Solar Phys. 215, 307 (2003).

    Article  ADS  Google Scholar 

  3. A. G. Kosovichev, The Origin and Dynamics of Solar Magnetism, ISSI Space Sci. Ser., vol. 32 (Springer Sci., 2009), p. 175.

  4. G. H. Fisher, Y. Fan, D. W. Longcope, et al., Solar Phys. 192, 119 (2000).

    Article  ADS  Google Scholar 

  5. A. Ruzmaikin, Solar Phys. 181, 1 (1998).

    Article  ADS  Google Scholar 

  6. S. K. Solanki, Astron. Astrophys. Rev. 11, 153 (2003).

    Article  ADS  Google Scholar 

  7. T. Magara, Astrophys. J. 685, L91 (2008).

    Article  ADS  Google Scholar 

  8. T. F. Chan and J. Shen, Image Processing and Analysis. Variational, PDE, Wavelet, and Stochastic Methods (SIAM, Philadelphia, 2005).

    MATH  Google Scholar 

  9. G. Fu, F. Y. Shih, and H. Wang, IEEE Trans. Image Process 17, 2174 (2008).

    Article  MathSciNet  ADS  Google Scholar 

  10. A. A. Golovko and I. I. Salakhutdinova, Soln.-Zemn. Fiz. 12, 25 (2008) [in Russian].

    Google Scholar 

  11. O. A. Kruglun, L. M. Karimova, S. A. Mukhamedzhanova, and N. G. Makarenko, Soln.-Zemn. Fiz. 10, 31 (2007) [in Russian].

    Google Scholar 

  12. V. Robins, J. D. Meiss, and E. Bradley, Nonlinearity 11, 913 (1998).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. V. Robins, J. D. Meiss, and E. Bradley, Physica D 139, 276 (2000).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. N. Makarenko and L. Karimova, Nucl. Instrum. Methods Phys. Res. A 502, 802 (2003).

    Article  ADS  Google Scholar 

  15. N. G. Makarenko, L. M. Karimova, and M. M. Novak, Physica A 380, 98 (2007).

    Article  ADS  Google Scholar 

  16. J. Kelley, General Topology (Springer, New York, 1955; Nauka, Moscow, 1968).

    MATH  Google Scholar 

  17. S. Schirra, Handbook of Computational Geometry (Elsevier, Amsterdam, 2000), p. 597.

    Book  Google Scholar 

  18. N. G. Makarenko, O. A. Kruglun, I. N. Makarenko, and L. M. Karimova, Issled. Zemli iz Kosmosa 3, 18 (2008) [in Russian].

    Google Scholar 

  19. J. Levy-Vehel and R. Vojak, Adv. Appl. Math. 20, 1 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  20. P. H. Scherre, A. G. Kosovichev, Rosenberg, et al., Solar Phys. 162, 29 (1995).

    Google Scholar 

  21. I. M. Chertok and V. V. Grechnev, Astron. Zh. 82, 180 (2005) [Astron. Rep. 49, 155 (2005)].

    Google Scholar 

  22. L. K. Kashapova and M. A. Livshits, Astron. Zh. 85, 1129 (2008) [Astron. Rep. 52, 1015 (2008)].

    Google Scholar 

  23. M. A. Livshits and O. G. Badalyan, Astron. Zh. 81, 1138 (2004) [Astron. Rep. 48, 1037 (2004)].

    Google Scholar 

  24. I. S.Knyazeva,N. G. Makarenko, and L.M. Karimova, Astron. Zh. 87, 812 (2010) [Astron. Rep. 54, 747 (2010)].

    Google Scholar 

  25. L. Guibas, D. Salesin, and J. Stolfi, in Proceedings of the 5th Annual Symposium on Computational Geometry (Saarbruchen, Germany, 1989), p. 208.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Knyazeva.

Additional information

Original Russian Text © I.S. Knyazeva, N.G. Makarenko, M.A. Livshits, 2011, published in Astronomicheskii Zhurnal, 2011, Vol. 88, No. 5, pp. 503–512.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knyazeva, I.S., Makarenko, N.G. & Livshits, M.A. Detection of new emerging magnetic flux from the topology of SOHO/MDI magnetograms. Astron. Rep. 55, 463–471 (2011). https://doi.org/10.1134/S1063772911050040

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772911050040

Keywords

Navigation