Skip to main content
Log in

Some properties of dust outside the galactic disk

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

The joint use of accurate near- and mid-infrared photometry from the 2MASS and WISE catalogues has allowed the variations of the extinction law and the dust grain size distribution in high Galactic latitudes (|b| > 50°) at distances up to 3 kpc from the Galactic midplane to be analyzed. The modified method of extrapolation of the extinction law applied to clump giants has turned out to be efficient for separating the spatial variations of the sample composition, metallicity, reddening, and properties of the medium. The detected spatial variations of the coefficientsE(H − W1)/E(H − Ks), E(H − W2)/E(H − Ks), and E(H − W3)/E(H − Ks) are similar for all high latitudes and depend only on the distance from the Galactic midplane. The ratio of short-wavelength extinction to long-wavelength one everywhere outside the Galactic disk has been found to be smaller than that in the disk and, accordingly, the mean dust grain size is larger, while the grain size distribution in the range 0.5–11 µm is shifted toward coarse dust. Specifically, the mean grain size initially increases sharply with distance from the Galactic midplane, then decreases gradually, approaching a value typical of the disk at |Z| ≈ 2.4 kpc, and, further out, stabilizes or may increase again. The coefficients under consideration change with coordinate Z with a period of about 1312 ± 40 pc, coinciding every 656 ± 20 pc to the south and the north and showing a significant anticorrelation between their values in the southern and northern hemispheres at intermediate Z. Thus, there exists a unified large-scale periodic structure of the interstellar medium at high latitudes within at least 5 kpc. The same periodic variations have also been found for the extinction coefficient R V within 600 pc of the Galactic midplane through the reduction of different photometric data for stars of different classes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. G. Bochkarev, Fundamentals of the Physics of Interstellar Medium (LIBROKOM, Moscow, 2010), p. 298 [in Russian].

    Google Scholar 

  2. A. Bressan, P. Marigo, L. Girardi, et al., Mon. Not. R. Astron. Soc. 427, 127 (2012).

    Article  ADS  Google Scholar 

  3. J. A. Cardelli, G. C. Clayton, and J. S. Mathis, Astrophys. J. 345, 245 (1989).

    Article  ADS  Google Scholar 

  4. B. T. Draine, Ann. Rev. Astron. Astrophys. 41, 241 (2003).

    Article  ADS  Google Scholar 

  5. ESA, Hipparcos and Tycho Catalogues (ESA, 1997).

    Google Scholar 

  6. A. M. Fridman and A. V. Khoperskov, Physics of Galactic Disks (Fizmatlit, Moscow, 2011; Cambridge International Science, 2012), pp. 385–387.

    Google Scholar 

  7. G. A. Gontcharov, Astron. Lett. 34, 785 (2008).

    Article  ADS  Google Scholar 

  8. G. A. Gontcharov, Astron. Lett. 36, 584 (2010).

    Article  ADS  Google Scholar 

  9. G. A. Gontcharov, Astron. Lett. 38, 12 (2012a).

    Article  ADS  Google Scholar 

  10. G. A. Gontcharov, Astron. Lett. 38, 87 (2012b).

    Article  ADS  Google Scholar 

  11. G. A. Gontcharov, Astron. Lett. 39, 83 (2013).

    Article  ADS  Google Scholar 

  12. E. Høg, C. Fabricius, V. V. Makarov, et al., Astron. Astrophys. 355, L27 (2000).

    ADS  Google Scholar 

  13. R. Indebetouw, J. S. Mathis, B. L. Babler, et al., Astrophys. J. 619, 931 (2005).

    Article  ADS  Google Scholar 

  14. D. O. Jones, A. A. West, and J. B. Foster, Astron. J. 142, 44 (2011).

    Article  ADS  Google Scholar 

  15. F. van Leeuwen, Astron. Astrophys. 474, 653 (2007).

    Article  ADS  Google Scholar 

  16. M. Lopez-Corredoira, A. Cabrera-Lavers, F. Garzon, et al., Astron. Astrophys. 394, 883 (2002).

    Article  ADS  Google Scholar 

  17. S. R. Majewski, G. Zasowski, and D. L. Nidever, Astrophys. J. 739, 25 (2011).

    Article  ADS  Google Scholar 

  18. P. Marigo, L. Girardi, A. Bressan, et al., Astron. Astrophys. 482, 883 (2008).

    Article  ADS  Google Scholar 

  19. D. J. Schlegel, D. P. Finkbeiner, and M. Davis, Astrophys. J. 500, 525 (1998).

    Article  ADS  Google Scholar 

  20. M. F. Skrutskie, R. M. Cutri, R. Stiening, et al., Astron. J. 131, 1163 (2006); http://www.ipac.caltech.edu/2mass/releases/allsky/index.html.

    Article  ADS  Google Scholar 

  21. V. Straizys, Multicolor Stellar Photometry (Pachart, Tucson, 1992; Mokslas, Vil’nyus, 1977).

    Google Scholar 

  22. E. L. Wright, P. R. M. Eisenhardt, A. K. Mainzer, et al., Astron. J. 140, 1868 (2010); http://irsa.ipac.caltech.edu/Missions/wise.html.

    Article  ADS  Google Scholar 

  23. G. Zasowski, S. R. Majewski, R. Indebetouw, et al., Astrophys. J. 707, 510 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Gontcharov.

Additional information

Original Russian Text © G.A. Gontcharov, 2013, published in Pis’ma v Astronomicheskiĭ Zhurnal, 2013, Vol. 39, No. 8, pp. 620–630.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gontcharov, G.A. Some properties of dust outside the galactic disk. Astron. Lett. 39, 550–560 (2013). https://doi.org/10.1134/S1063773713070025

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773713070025

Keywords

Navigation