Skip to main content
Log in

Sub-terahertz emission from solar flares: The plasma mechanism of chromospheric emission

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

We consider the plasma mechanism of sub-terahertz emission from solar flares and determine the conditions for its realization in the solar atmosphere. The source is assumed to be localized at the chromospheric footpoints of coronal magnetic loops, where the electron density should reach n ≈ 1015 cm−3. This requires chromospheric heating at heights h ⩾ 500 km to coronal temperatures, which provides a high degree of ionization needed for Langmuir frequencies ν p ≈ 200–400 GHz and reduces the bremsstrahlung absorption of the sub-THz emission as it escapes from the source. The plasma wave excitation threshold for electron-ion collisions imposes a constraint on the lower density limit for energetic electrons in the source, n 1 > 4 × 109 cm−3. The generation of emission at the plasma frequency harmonic ν ≈ 2ν p rather than the fundamental tone turns out to be preferred. We show that the electron acceleration and plasma heating in the sub-THz emission source can be realized when the ballooning mode of the flute instability develops at the chromospheric footpoints of a flare loop. The flute instability leads to the penetration of external chromospheric plasma into the loop and causes the generation of an inductive electric field that efficiently accelerates the electrons and heats the chromosphere in situ. We show that the ultraviolet radiation from the heated chromosphere emerging in this case does not exceed the level observed during flares.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. J. Aschwanden, J. C. Brown, and E. P. Kontar, Solar Phys. 210, 383 (2002).

    Article  ADS  Google Scholar 

  2. A. Brutsek and Sh. Duran, in Solar and Solar-Terrestrial Physics (Mir, Moscow, 1980) [in Russian].

    Google Scholar 

  3. G. D. Fleishman and E. P. Kontar, Astrophys. J. 709, L127 (2010).

    Article  ADS  Google Scholar 

  4. G. D. Fleishman, G. M. Nita, and D. Gary, Astrophys. J. Lett. 620, 506 (2005).

    Article  ADS  Google Scholar 

  5. D. A. Guidice and J. P. Castelli, Solar Phys. 44, 155 (1975).

    Article  ADS  Google Scholar 

  6. Haisheng Ji, Wenda Cao, and P.R. Goode, Astrophys. J. Lett. 750, L25 (2012).

    Article  ADS  Google Scholar 

  7. P. Kaufmann, Astrophys. Space Sci. Proc. 30, 61 (2012)

    Article  Google Scholar 

  8. P. Kaufmann, C. G. G. de Castro, E. Correa, et al., Astrophys. J. 697, 420 (2009).

    Article  ADS  Google Scholar 

  9. P. Kaufmann, E. Correa, J. E. R. Costa, and A.M. Zodi Vaz, Astron. Astrophys. 157, 11 (1986).

    ADS  Google Scholar 

  10. P. Kaufmann and J.-P. Raulin, Phys. Plasmas 13, 070701 (2006).

    Article  ADS  Google Scholar 

  11. P. Kaufmann, J.-P. Raulin, C. G. G. de Castro, et al., Astrophys. J. Lett. 603, L121 (2004).

    Article  ADS  Google Scholar 

  12. T. Lüthi, A. Lüdi, and A. Magun, Astron. Astrophys. 420, 361 (2004).

    Article  ADS  Google Scholar 

  13. V. F. Melnikov, J. E. R. Costa, and P. J. A. Simoes, in Proceedings of the Pulkovo Conference on Solar and Solar-Terrestrial Physics-2011 (Glavn. Astron. Observ. RAN, St. Petersburg (2011)), p. 159; Solar Phys. (2013, in press).

    Google Scholar 

  14. D. Menzel, Astrophys. J. 85, 332 (1937).

    Google Scholar 

  15. G. M. Nita, D. Gary, and J. Lee, Astrophys. J. 605, 528 (2004).

    Article  ADS  Google Scholar 

  16. J.-P. Raulin, P. Kaufmann, C. G. G. de Castro, et al., Astrophys. J. 592, 580 (2003).

    Article  ADS  Google Scholar 

  17. J. I. Sakai, Y. Nagasugi, S. Saito, and P. Kaufmann, Astron. Astrophys. 457, 313 (2006).

    Article  ADS  Google Scholar 

  18. I. S. Shklovskii, Physics of the Solar Corona (Fizmatgiz, Moscow, 1962; Pergamon Press, London, 1964).

    Google Scholar 

  19. A. V. R. Silva, G. H. Share, R. J. Murphy, et al., Solar Phys. 245, 311 (2007).

    Article  ADS  Google Scholar 

  20. B. V. Somov and S. I. Syrovatskii, Sov. Phys. Usp. 19, 813 (1976).

    Article  ADS  Google Scholar 

  21. A. V. Stepanov, B. Kliem, A. Krüger, et al., Astrophys. J. 524, 961 (1999).

    Article  ADS  Google Scholar 

  22. G. Trottet, S. Krucker, T. Lüthi, and A. Magun, Astrophys. J. 678, 509 (2008).

    Article  ADS  Google Scholar 

  23. G. Trottet, J.-P. Raulin, C. G. G. de Castro, et al., Solar Phys. 273, 339 (2011).

    Article  ADS  Google Scholar 

  24. J. E. Vernazza, E. H. Avrett, and R. Loeser, Astrophys. J. Suppl. 45, 635 (1981).

    Article  ADS  Google Scholar 

  25. V. V. Zaitsev and A. V. Stepanov, Solar Phys. 88, 297 (1983).

    Article  ADS  Google Scholar 

  26. V. V. Zaitsev, S. Urpo, and A. V. Stepanov, Astron. Astrophys. 357, 1105 (2000).

    ADS  Google Scholar 

  27. V. V. Zheleznyakov, Radiation in Astrophysical Plasma (Yanus-K, Moscow, 1997) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Stepanov.

Additional information

Original Russian Text © V.V. Zaitsev, A.V. Stepanov, V.F. Melnikov, 2013, published in Pis’ma v Astronomicheskiı Zhurnal, 2013, Vol. 39, No. 9, pp. 726–736.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaitsev, V.V., Stepanov, A.V. & Melnikov, V.F. Sub-terahertz emission from solar flares: The plasma mechanism of chromospheric emission. Astron. Lett. 39, 650–659 (2013). https://doi.org/10.1134/S1063773713090089

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773713090089

Keywords

Navigation