Skip to main content
Log in

X-ray variability of SS 433: Evidence for supercritical accretion

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

We study the X-ray variability of SS 433 based on data from the ASCA observatory and the MAXI and RXTE/ASM monitoring missions. Based on the ASCA data, we have constructed the power spectrum of SS 433 in the frequency range from 10−6 to 0.1 Hz, which confirms the presence of a flat portion in the spectrum at frequencies 3 × 10−5−10−3 Hz. The periodic variability (precession, nutation, eclipses) begins to dominate significantly over the stochastic variability at lower frequencies, which does not allow the stochastic variability to be studied reliably. The model in which the flat portion extends to 9.5 × 10−6 Hz, while a power-law rise with an index of 2.6 occurs below provides the best agreement with the observations. The nutational oscillations of the jets with a period of about three days suggests that the time for the passage of material through the disk is less than this value. At frequencies below 4 × 10−6 Hz, the shape of the power spectrum probably does not reflect the disk structure but is determined by external factors, for example, by a change in the amount of material supplied by the donor. The flat portion can arise from a rapid decrease in the viscous time in the supercritical or radiative disk zones. The flat spectrum is associated with the variability of the X-ray jets that are formed in the supercritical disk region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Atapin, S. Fabrika, A. Medvedev, and A. Vinokurov, Mon. Not. R. Astron. Soc. 446, 893 (2015).

    Article  ADS  Google Scholar 

  2. D. V. Bisikalo, A. A. Boyarchuk, O. A. Kuznetsov, and V. M. Chechetkin, Astron. Rep. 43, 587 (1999).

    ADS  Google Scholar 

  3. W. Brinkmann, T. Kotani, and N. Kawai, Astron. Astrophys. 431, 575 (2005).

    Article  ADS  Google Scholar 

  4. R. A. Burenin, M. G. Revnivtsev, I. M. Khamitov, I. F. Bikmaev, A. S. Nosov, M. N. Pavlinsky, and R. A. Syunyaev, Astron. Lett. 37, 100 (2011).

    Article  ADS  Google Scholar 

  5. A. Cherepashchuk, Space Sci. Rev. 102, 23 (2002).

    Article  ADS  Google Scholar 

  6. A. M. Cherepashchuk, R. A. Sunyaev, S. V. Molkov, E. A. Antokhina, K. A. Postnov, and A. I. Bogomazov, Mon. Not. R. Astron. Soc. 436, 2004 (2013).

    Article  ADS  Google Scholar 

  7. V. V. Davydov, V. F. Esipov, and A. M. Cherepashchuk, Astron. Rep. 52, 487 (2008).

    Article  ADS  Google Scholar 

  8. J. F. Dolan, P. T. Boyd, S. Fabrika, S. Tapia, V. Bychkov, A. A. Panferov, M. J. Nelson, J. W. Percival, et al., Astron. Astrophys. 327, 648 (1997).

    ADS  Google Scholar 

  9. C. Done, G. M. Madejski, R. F. Mushotzky, T. J. Turner, K. Koyama, and H. Kunieda, Astrophys. J. 400, 138 (1992).

    Article  ADS  Google Scholar 

  10. S. Fabrika, Astrophys. Space Sci. 252, 439 (1997).

    Article  ADS  Google Scholar 

  11. S. Fabrika, Astrophys. Space Phys. Rev. 12, 1 (2004).

    ADS  Google Scholar 

  12. E. Filippova, M. Revnivtsev, S. Fabrika, K. Postnov, and E. Seifina, Astron. Astrophys. 460, 125 (2006).

    Article  ADS  Google Scholar 

  13. D. R. Gies, M. V. McSwain, R. L. Riddle, Z. Wang, P. J. Wiita, and D. W. Wingert, Astrophys. J. 566, 1069 (2002).

    Article  ADS  Google Scholar 

  14. V. P. Goranskii, Perem. Zvezdy 31, 5 (2011).

    ADS  Google Scholar 

  15. V. P. Goranskii, V. F. Esipov, and A. M. Cherepashchuk, Astron. Rep. 42, 209 (1998).

    ADS  Google Scholar 

  16. A. R. Green, I. M. McHardy, and C. Done, Mon. Not. R. Astron. Soc. 305, 309 (1999).

    Article  ADS  Google Scholar 

  17. Y. F. Jiang, J. M. Stone, and S. W. Davis, Astrophys. J. 796, 106 (2014).

    Article  ADS  Google Scholar 

  18. I. Khabibullin, P. Medvedev, and S. Sazonov, Mon. Not. R. Astron. Soc. 455, 1414 (2016).

    Article  ADS  Google Scholar 

  19. M. van der Klis, Statistical Challenges in Modern Astronomy (Springer, Berlin, 1997), Vol. 2, p. 321.

    Book  Google Scholar 

  20. G. V. Lipunova, Astron. Lett. 25, 591 (1999).

    Google Scholar 

  21. N. R. Lomb, Astrophys. Space Sci. 39, 447 (1976).

    Article  ADS  Google Scholar 

  22. Y. E. Lyubarskii, Mon. Not. R. Astron. Soc. 292, 679 (1997).

    Article  ADS  Google Scholar 

  23. H. L. Marshall, C. R. Canizares, T. Hillwig, A. Mioduszewski, M. Rupen, N. S. Schulz, M. Nowak, and S. Heinz, Astrophys. J. 775, 75 (2013).

    Article  ADS  Google Scholar 

  24. M. Matsuoka, K. Kawasaki, S. Ueno, H. Tomida, M. Kohama, M. Suzuki, Y. Adachi, M. Ishikawa, et al., Publ. Astron. Soc. Jpn. 61, 999 (2009).

    Article  ADS  Google Scholar 

  25. A. Medvedev and S. Fabrika, Mon. Not. R. Astron. Soc. 402, 479 (2010).

    Article  ADS  Google Scholar 

  26. M. Middleton and C. Done, Mon. Not. R. Astron. Soc. 403, 9 (2010).

    Article  ADS  Google Scholar 

  27. K. Ohsuga and S. Mineshige, Astrophys. J. 736, 2 (2011).

    Article  ADS  Google Scholar 

  28. A. A. Panferov and S. N. Fabrika, Astron. Rep. 41, 506 (1997).

    ADS  Google Scholar 

  29. A. A. Panferov, S. N. Fabrika, and V. Yu. Rakhimov, Astron. Rep. 41, 342 (1997).

    ADS  Google Scholar 

  30. I. E. Papadakis abd A. Lawrence, Mon. Not. R. Astron. Soc. 261, 612 (1993).

    Article  ADS  Google Scholar 

  31. J. Poutanen, G. Lipunova, S. Fabrika, A. G. Butkevich, and P. Abolmasov, Mon. Not. R. Astron. Soc. 377, 1187 (2007).

    Article  ADS  Google Scholar 

  32. M. B. Priestley, Spectral Analysis and Time Series (Academic, London, 1981), p. 397.

    Google Scholar 

  33. M. Revnivtsev, R. Burenin, S. Fabrika, K. Postnov, I. Bikmaev, M. Pavlinsky, R. Sunyaev, I. Khamitov, et al., Astron. Astrophys. 424, L5 (2004).

    Article  ADS  Google Scholar 

  34. M. Revnivtsev, S. Fabrika, P. Abolmasov, K. Postnov, I. Bikmaev, R. Burenin, M. Pavlinsky, R. Sunyaev, et al., Astron. Astrophys. 447, 545 (2006).

    Article  ADS  Google Scholar 

  35. K. Sawada, T. Matsuda, and I. Hachisu, Mon. Not. R. Astron. Soc. 219, 75 (1986).

    Article  ADS  Google Scholar 

  36. J. D. Scargle, Astrophys. J. 263, 835 (1982).

    Article  ADS  Google Scholar 

  37. N. Shakura and R. Sunyaev, Astron. Astrophys. 24, 337 (1973).

    ADS  Google Scholar 

  38. L. Stella, E. Arlandi, G. Tagliaferri, and G. L. Israel, arXiv:astro-ph/9411050 (1994).

  39. J. Sugimoto, T. Mihara, M. Sugizaki, M. Serino, S. Kitamoto, R. Sato, Y. Ueda, and S. Ueno, JPS Conf. Proc. 1, 013104 (2014).

    Google Scholar 

  40. Y. Tanaka, H. Inoue, and S. S. Holt, Publ. Astron. Soc. Jpn. 46, L37 (1994).

    ADS  Google Scholar 

  41. J. Timmer and M. Koenig, Astron. Astrophys. 300, 707 (1995).

    ADS  Google Scholar 

  42. P. Uttley, I. M. McHardy, and I. E. Papadakis, Mon. Not. R. Astron. Soc. 332, 231 (2002).

    Article  ADS  Google Scholar 

  43. S. Vaughan, Astron. Astrophys. 431, 391 (2005).

    Article  ADS  Google Scholar 

  44. S. Vaughan, R. Edelson, R. S. Warwick, and U. Uttley, Mon. Not. R. Astron. Soc. 345, 1271 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. E. Atapin.

Additional information

Original Russian Text © K.E. Atapin, S.N. Fabrika, 2016, published in Pis’ma v Astronomicheskii Zhurnal, 2016, Vol. 42, No. 8, pp. 571–585.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atapin, K.E., Fabrika, S.N. X-ray variability of SS 433: Evidence for supercritical accretion. Astron. Lett. 42, 517–530 (2016). https://doi.org/10.1134/S106377371607001X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377371607001X

Keywords

Navigation