Skip to main content
Log in

Morphology of the Light Curves for the X-ray Novae H 1743-322 and GX 339-4 during Their Outbursts in 2005–2019

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

Based on long-term SWIFT, RXTE, and MAXI observations of the X-ray novae H 1743-322 (IGR J17464-3213) and GX 339-4, we have investigated the morphology and classified the light curves of their X-ray outbursts. In particular, we have confirmed the existence of two radically different types of outbursts, soft (S) and hard (H), in both sources and revealed their varieties, ultrabright (U) and intermediate (I). The properties and origin of the differences in the light curves of these outbursts are discussed in terms of the truncated accretion disk model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. The same figure shows the previous very faint hard outburst 3 occurred in July 2008.

  2. The outbursts of GX 339-4 in 2007 and 2009 were investigated with RXTE/ASM; accordingly, the soft 1.3–3 and 3–12.2 keV bands were used in constructing the light curves of these outbursts.

  3. This definitely does not pertain to the 2009–2011 outburst of this source, which had a highly asymmetric shape, but is apparently true for the 2014–2015 outburst as well (see Fig. 10).

REFERENCES

  1. S. D. Barthelmy, L. M. Barbier, J. R. Cummings, E. E. Fenimore, N. Gehrels, D. Hullinger, H. A. Krimm, C. B. Markwardt, et al., Space Sci. Rev. 120, 143 (2005).

    ADS  Google Scholar 

  2. T. M. Belloni, Lect. Notes Phys. 53, 794 (2010).

  3. A. M. Cherepashchuk, Close Binary Stars (Fizmatlit, Moscow, 2013) [in Russian].

    MATH  Google Scholar 

  4. S. Corbel, P. Kaaret, R. P. Fender, A. K. Tzioumis, J. A. Tomsick, and J. A. Orosz, Astrophys. J. 632, 504 (2005).

    ADS  Google Scholar 

  5. M. Espinasse and R. Fender, Mon. Not. R. Astron. Soc. 473, 4122 (2018).

    ADS  Google Scholar 

  6. A. A. Galeev, R. Rosner, and G. S. Vaiana, Astrophys. J. 229, 318 (1979).

    ADS  Google Scholar 

  7. N. Gehrels, G. Chincarini, P. Giommi, K. O. Mason, J. A. Nousek, A. A. Wells, N. E. White, S. D. Barthelmy, et al., Astrophys. J. 611, 1005 (2004).

    ADS  Google Scholar 

  8. S. A. Grebenev, Astron. Lett. 46 (2020, in press).

  9. S. A. Grebenev and I. A. Mereminskiy, Astron. Telegram 12007, 1 (2018).

    ADS  Google Scholar 

  10. S. A. Grebenev, R. A. Syunyaev, M. N. Pavlinskii, and I. A. Dekhanov, Sov. Astron. Lett. 17, 413 (1991).

    ADS  Google Scholar 

  11. S. Grebenev, R. Sunyaev, M. Pavlinsky, E. Churazov, M. Gilfanov, A. Dyachkov, N. Khavenson, K. Sukhanov, et al., Astron. Astrophys. Suppl. Ser. 97, 281 (1993).

    ADS  Google Scholar 

  12. S. A. Grebenev, R. A. Sunyaev, and M. N. Pavlinsky, Adv. Space Res. 19, 15 (1997).

    ADS  Google Scholar 

  13. S. A. Grebenev, A. A. Lutovinov, and R. A. Sunyaev, Astron. Telegram 189, 1 (2003).

    ADS  Google Scholar 

  14. S. A. Grebenev, A. V. Prosvetov, R. A. Burenin, R. A. Krivonos, and A. V. Meshcheryakov, Astron. Lett. 42, 69 (2016).

    ADS  Google Scholar 

  15. J. E. Grove, W. N. Johnson, R. A. Kroeger, K. McNaron-Brown, J. G. Skiboe, and B. F. Phlips, Astrophys. J. 500, 899 (1998).

    ADS  Google Scholar 

  16. H. Gursky, H. Bradt, R. Doxsey, D. Schwartz, J. Schwarz, R. Dower, G. Fabbiano, R. E. Griffiths, et al., Astrophys. J. 223, 973 (1978).

    ADS  Google Scholar 

  17. F. Haardt and L. Maraschi, Astrophys. J. 380, L51 (1991).

    ADS  Google Scholar 

  18. R. I. Hynes, D. Steeghs, J. Casares, P. A. Charles, and K. O’Brien, Astrophys. J. 583, L95 (2003).

    ADS  Google Scholar 

  19. R. I. Hynes, D. Steeghs, J. Casares, P. A. Charles, and K. O’Brien, Astrophys. J. 609, 317 (2004).

    ADS  Google Scholar 

  20. K. Jahoda, J. H. Swank, A. B. Giles, M. J. Stark, T. Strohmayer, W. Zhang, and E. H. Morgan, Proc. SPIE 2808, 59 (1996).

    ADS  Google Scholar 

  21. P. Kretschmar, J. Chenevez, F. Capitanio, A. Orr, G. Palumbo, and S. Grebenev, Astron. Telegram 180, 1 (2003).

    ADS  Google Scholar 

  22. H. A. Krimm, S. T. Holland, R. H. D. Corbet, A. B. Pearlman, P. Romano, J. A. Kennea, J. S. Bloom, S. D. Barthelmy, et al., Astrophys. J. Suppl. Ser. 209, 14 (2013).

    ADS  Google Scholar 

  23. G. V. Lipunova and N. I. Shakura, Astron. Astrophys. 356, 363 (2000).

    ADS  Google Scholar 

  24. Yu. E. Lyubarskii and N. I. Shakura, Sov. Astron. Lett. 13, 386 (1987).

    ADS  Google Scholar 

  25. K. Makishima, Y. Maejima, K. Mitsuda, H. V. Bradt, R. A. Remillard, I. R. Tuohy, R. Hoshi, and M. Nakagawa, Astrophys. J. 308, 635 (1986).

    ADS  Google Scholar 

  26. T. H. Markert, C. R. Canizares, G. W. Clark, W. H. G. Lewin, H. W. Schnopper, and G. F. Sprott, Astrophys. J. 184, L67 (1973).

    ADS  Google Scholar 

  27. C. B. Markwardt, Astron. Telegram 136, 1 (2003).

    ADS  Google Scholar 

  28. M. Matsuoka, K. Kawasaki, S. Ueno, H. Tomida, M. Kohama, M. Suzuki, Y. Adachi, M. Ishikawa, et al., Publ. Astron. Soc. Jpn. 61, 999 (2009).

    ADS  Google Scholar 

  29. I. A. Mereminskii, E. V. Filippova, R. A. Krivonos, S. A. Grebenev, R. A. Burenin, and R. A. Sunyaev, Astron. Lett. 43, 167 (2017).

    ADS  Google Scholar 

  30. F. Meyer, B. F. Liu, and E. Meyer-Hofmeister, Astron. Astrophys. 361, 175 (2000).

    ADS  Google Scholar 

  31. T. Mihara, M. Nakajima, M. Sugizaki, M. Serino, M. Matsuoka, M. Kohama, K. Kawasaki, H. Tomida, S. Ueno, and N. Kawai, Publ. Astron. Soc. Jpn. 63, S623 (2011).

    Google Scholar 

  32. S. Miyamoto, K. Kimura, and S. Kitamoto, Astrophys. J. 383, 784 (1991).

    ADS  Google Scholar 

  33. C. Motch, M. J. Ricketts, C. G. Page, S. A. Ilovaisky, and C. Chevalier, Astron. Astrophys. 119, 171 (1983).

    ADS  Google Scholar 

  34. R. A. Remillard and J. E. McClintock, Ann. Rev. Astron. Astrophys. 44, 49 (2006).

    ADS  Google Scholar 

  35. M. Revnivtsev, M. Chernyakova, F. Capitanio, N. J. Westergaard, V. Shoenfelder, N. Gehrels, and C. Winkler, Astron. Telegram 132, 1 (2003).

    ADS  Google Scholar 

  36. N. I. Shakura and R. A. Sunyaev, Astron. Astrophys. 24, 337 (1973).

    ADS  Google Scholar 

  37. N. I. Shakura and R. A. Sunyaev, Mon. Not. R. Astron. Soc. 175, 613 (1976).

    ADS  Google Scholar 

  38. S. L. Shapiro, A. P. Lightman, and D. M. Eardley, Astrophys. J. 204, 187 (1976).

    ADS  Google Scholar 

  39. J. F. Steiner, J. E. McClintock, and M. J. Reid, Astrophys. J. 745, L7 (2012).

    ADS  Google Scholar 

  40. V. F. Suleimanov, G. V. Lipunova, and N. I. Shakura, Astron. Astrophys. 491, 267 (2008).

    ADS  Google Scholar 

  41. R. A. Sunyaev and J. Truemper, Nature (London, U. K.) 279, 506 (1979).

    ADS  Google Scholar 

  42. J. Swank, Astron. Telegram 301, 1 (2004).

    ADS  Google Scholar 

  43. J. H. Swank, R. Remillard, and C. B. Markwardt, Astron. Telegram 576, 1 (2005).

    ADS  Google Scholar 

  44. R. A. Sunyaev, I. Yu. Lapshov, S. A. Grebenev, V. V. Efremov, A. S. Kaniovskii, D. K. Stepanov, S. N. Yunin, E. A. Gavrilova, et al., Sov. Astron. Lett. 14, 327 (1988).

    ADS  Google Scholar 

  45. R. Sunyaev, V. Aref’ev, K. Borozdin, M. Gilfanov, V. Efremov, A. Kaniovskii, E. Churazov, E. Kendziora, al., Sov. Astron. Lett. 17, 413 (1991).

    ADS  Google Scholar 

  46. Y. Tanaka and N. Shibazaki, Ann. Rev. Astron. Astrophys. 34, 607 (1996).

    ADS  Google Scholar 

  47. J. A. Tomsick and E. Kalemci, Astron. Telegram 198, 1 (2003).

    ADS  Google Scholar 

  48. D. R. A. Williams, S. E. Motta, R. Fender, J. Bright, I. Heywood, E. Tremou, P. Woudt, D. A. H. Buckley, et al., Mon. Not. R. Astron. Soc. (2020, in press); arXiv:1910.00349.

  49. C. Winkler, T. J.-L. Courvoisier, G. Di Cocco, N. Gehrels, A. Gimenez, S. Grebenev, W. Hermsen, J. M. Mas-Hesse, et al., Astron. Astrophys. 411, L1 (2003).

    ADS  Google Scholar 

  50. K. S. Wood, J. F. Meekins, D. J. Yentis, H. W. Smathers, D. P. McNutt, R. D. Bleach, E. T. Byram, T. A. Chupp, et al., Astrophys. J. Suppl. Ser. 56, 507 (1984).

    ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The study is based on the MAXI data provided by RIKEN (JAXA) and the MAXI team, the SWIFT data provided by NASA and the SWIFT team, and the RXTE data provided by the ASM/RXTE team.

Funding

A.G., Yu.D., V.K., and K.O. are grateful to the Space Research Institute of the Russian Academy of Sciences for the organization of the work practice during which this study was performed. S.G., I.M., and A.P. are grateful to Basic Research Program no. 12 of the Russian Academy of Sciences (“Questions of the Origin and Evolution of the Universe with the Application of Methods of Ground-Based Observations and Space Research”) and the Russian Foundation for Basic Research (project no. 17-02-01079-a) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Grebenev.

Additional information

Translated by V. Astakhov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grebenev, A.S., Dvorkovich, Y.A., Knyazeva, V.S. et al. Morphology of the Light Curves for the X-ray Novae H 1743-322 and GX 339-4 during Their Outbursts in 2005–2019. Astron. Lett. 46, 205–223 (2020). https://doi.org/10.1134/S1063773720040052

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773720040052

Navigation