Skip to main content
Log in

Quantum Optics of Mössbauer Radiation

  • DIFFRACTION AND SCATTERING OF IONIZING RADIATIONS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The increase in the brightness of modern synchrotron radiation sources and X-ray free-electron lasers have made it possible to observe nonlinear and quantum-optical phenomena for X rays. The peak intensity after focusing with application of bent crystals is as high as 1020 W/cm2 for modern sources and exceeds that characteristic of intraatomic fields. X-ray detectors with close-to-unity quantum efficiency and resolution in number of photons have become available. This provided prerequisites for studying fundamental concepts of quantum optics in the X-ray region of the electromagnetic spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. V. L. Nosik, Crystallogr. Rep. 47 (1), 1 (2002).

    Article  ADS  Google Scholar 

  2. E. V. Zolotoyabko and E. M. Iolin, Coherent Rayleigh Scattering of Mössbauer Radiation (Zinatne, Riga, 1986) [in Russian].

    Google Scholar 

  3. http://www.xfel.eu/

  4. T. S. Toellner, E. E. Alp, T. Graber, et al., J. Synchrotron Radiat. 18, 183 (2011). https://doi.org/10.1107/S090904951003863X

    Article  Google Scholar 

  5. K. P. Heeg, J. Haber, D. Schumacher, et al., Phys. Rev. Lett. 114, 203601 (2015). https://doi.org/10.1103/PhysRevLett.114.203601

  6. K. P. Heeg, A. Kaldun, C. Strohm, et al., Science 357, 375 (2017). https://doi.org/10.1126/science.aan3512

    Article  ADS  Google Scholar 

  7. B. Herkommer and J. Evers, Phys. Rev. Res. 2, 023397 (2020). https://doi.org/10.1103/PhysRevResearch.2.023397

  8. V. Potapkin, A. I. Chumakov, G. V. Smirnov, et al., Phys. Rev. A 86, 053808 (2012). https://doi.org/10.1103/PhysRevA.86.053808

  9. T. Mitsui, R. Masuda, M. Seto, and N. Hirao, J. Phys. Soc. Jpn. 87, 093001 (2018). https://doi.org/10.7566/JPSJ.87.093001

  10. W.-T. Liao, A. Palffy, and C. H. Keitel, Phys. Rev. Lett. 109, 197403 (2012). https://doi.org/10.1103/PhysRevLett.109.197403

  11. W.-T. Liao and A. Palffy, Phys. Rev. Lett. 112, 057401 (2014). https://doi.org/10.1103/PhysRevLett.112.057401

  12. W.-T. Liao, C. H. Keitel, and A. Palffy, Sci. Rep. 6, 33361 (2016). https://doi.org/10.1038/srep33361

    Article  ADS  Google Scholar 

  13. X. Zhang, W.-T. Liao, A. Kalachev, et al., Phys. Rev. Lett. 123, 250504 (2019). https://doi.org/10.1103/PhysRevLett.123.250504

  14. S. Volkovich and S. Shwartz, Opt. Lett. 45, 2729 (2020). https://doi.org/10.1364/OL.382044

    Article  ADS  Google Scholar 

  15. L. J. Wong and I. Kaminer, Appl. Phys. Lett. 119, 130502 (2021). https://doi.org/10.1063/5.0060552

  16. E. Strizhevsky, D. Borodin, A. Schori, et al., Phys. Rev. Lett. 127, 013603 (2021). https://doi.org/10.1103/PhysRevLett.127.013603

  17. K. Heeg, A. Kaldun, C. Strohm, et al., Nature 590, 401 (2021). https://doi.org/10.1038/s41586-021-03276-x

    Article  ADS  Google Scholar 

  18. P. Kolchin, C. Belthangady, S. Du, et al., Phys. Rev. Lett. 101, 103601 (2008). https://doi.org/10.1103/PhysRevLett.101.103601

  19. J. M. Donohue, M. Agnew, J. Lavoie, and K. J. Resch, Phys. Rev. Lett. 111, 153602 (2013). https://doi.org/10.1103/PhysRevLett.111.153602

  20. P. C. Humphreys, B. J. Metcalf, J. B. Spring, et al., Phys. Rev. Lett. 111, 150501 (2013). https://doi.org/10.1103/PhysRevLett.111.150501

  21. P. G. Kwiat, K. Mattle, H. Weinfurter, et al., Phys. Rev. Lett. 75, 4337 (1995). https://doi.org/10.1103/PhysRevLett.75.4337

    Article  ADS  Google Scholar 

  22. L. Gilder, The Age of Entanglement (Vintage Books, New York, 2008).

    Google Scholar 

  23. A. R. Cameron, S. W. L. Cheng, S. Schwarz, et al., Phys. Rev. A 104, L051701 (2021). https://doi.org/10.1103/PhysRevA.104.L051701

  24. F. Wilhelm, R. Eloirdi, J. Rusz, et al., Phys. Rev. B 88, 024424 (2013). https://doi.org/10.1103/PhysRevB.88.024424

  25. V. V. Kotlyar and A. A. Kovalev, Accelerating and Vortex Laser Beams (CRC Press, Boca Raton, USA, 2019).

    Book  Google Scholar 

  26. Diffractive Optics and Nanophotonics, Ed. by V. A. Soifer (CRC Press, Boca Raton, USA, 2017).

    MATH  Google Scholar 

  27. S. Shwartz, R. N. Coffee, J. M. Feldkamp, et al., Phys. Rev. Lett. 109, 013602 (2012). https://doi.org/10.1103/PhysRevLett.109.013602

  28. R. Rohlsberger, H.-C. Wille, K. Schlage, and B. Sahoo, Nature 482, 199 (2012). https://doi.org/10.1038/nature10741

    Article  ADS  Google Scholar 

  29. R. Rohlsberger, K. Schlage, B. Sahoo, et al., Science 328, 1248 (2010). https://doi.org/10.1126/science.1187770

    Article  ADS  Google Scholar 

  30. K. P. Heeg, H.-C. Wille, K. Schlage, et al., Phys. Rev. Lett. 111, 073601 (2013). https://doi.org/10.1103/PhysRevLett.111.073601

  31. R. Shakhmuratov, F. Vagizov, and O. Kocharovskaya, Phys. Rev. A 87, 013807 (2013). https://doi.org/10.1103/PhysRevA.87.013807

  32. K. P. Heeg, C. Ott, D. Schumacher, et al., Phys. Rev. Lett. 114, 207401 (2015). https://doi.org/10.1103/PhysRevLett.114.207401

  33. K. P. Heeg, J. Haber, D. Schumacher, et al., Phys. Rev. Lett. 114, 203601 (2015). https://doi.org/10.1103/PhysRevLett.114.203601

  34. J. Haber, K. S. Schulze, K. Schlage, et al., Nat. Photonics 10, 445 (2016). https://doi.org/10.1038/nphoton.2016.77

    Article  ADS  Google Scholar 

  35. K. P. Heeg, A. Kaldun, C. Strohm, et al., Science 357, 375 (2017). https://doi.org/10.1126/science.aan3512

    Article  ADS  Google Scholar 

  36. J. Haber, X. Kong, C. Strohm, et al., Nat. Photonics 11, 720 (2017). https://doi.org/10.1364/JOSAB.377328

    Article  ADS  Google Scholar 

  37. V. L. Nosik, J. Phys. IV Colloque C2. Suppl. J. Phys. III 4, c2-225 (1994).

  38. L. Bocklage, J. Gollwitzer, C. Strohm, et al., Sci. Adv. 7, eabc3991 (2021). https://doi.org/10.1126/SCIADV.ABC3991

  39. Yu. Shvyd’ko, S. Stoupin, V. Blank, et al., Nat. Photonics 5, 539 (2011). https://doi.org/10.1038/NPHOTON.2011.197

    Article  ADS  Google Scholar 

  40. J. Chen, I. V. Tomov, A. O. Er, and P. Rentzepis, Appl. Phys. Lett. 102, 173101 (2013). https://doi.org/10.1117/2.1201307.004947

  41. K.-J. Kim, Yu. Shvyd’ko, and S. Reicher, Phys. Rev. Lett. 100, 244802 (2008). https://doi.org/10.1103/PhysRevLett.100.244802

  42. E. Strizhevsky, D. Borodin, A. Schori, et al., Phys. Rev. Lett. 127, 013603 (2021). https://doi.org/10.1103/PhysRevLett.127.013603

  43. A. G. White, J. R. Mitchell, O. Nairz, and P. G. Kwiat, Phys. Rev. A 58, 605 (1998). https://doi.org/10.1103/PhysRevA.58.605

    Article  ADS  Google Scholar 

  44. C. K. Hong, Z. Y. Ou, and L. Mandel, Phys. Rev. Lett. 59, 2044 (1987). https://doi.org/10.1103/PhysRevLett.59.2044

    Article  ADS  Google Scholar 

  45. R. Röhlsberger, J. Evers, and S. Shwartz, Synchrotron Light Sources and Free-Electron Lasers: Accelerator Physics, Instrumentation and Science Applications, Ed. by E. J. Jaeschke (Springer International Publishing Cham, 2020), p. 1399. https://doi.org/10.1007/978-3-030-23201-6_32

    Book  Google Scholar 

  46. W.-T. Liao, A. Palffy, and C. H. Keitel, Phys. Lett. B 705, 134 (2011). https://doi.org/10.1016/j.physletb.2011.09.107

    Article  ADS  Google Scholar 

  47. W.-T. Liao, A. Palffy, and C. H. Keitel, Phys. Rev. Lett. 109, 197403 (2012). https://doi.org/10.1103/PhysRevLett.109.197403

  48. J. Gunst, C. H. Keitel, and A. Palffy, Sci. Rep. 6, 25136 (2016). https://doi.org/10.1038/srep25136

    Article  ADS  Google Scholar 

  49. T. Li and X. Wang, J. Phys. G 48, 095105 (2021). https://doi.org/10.1088/1361-6471/ac1712

  50. M. V. Koval’chuk, S. I. Zheludeva, and V. L. Nosik, Priroda, No. 2, 54 (1997).

  51. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Rev. Mod. Phys. 77, 633 (2005). https://doi.org/10.1103/RevModPhys.77.633

    Article  ADS  Google Scholar 

  52. U. Fano, Phys. Rev. 124, 1866 (1961).

    Article  ADS  Google Scholar 

  53. A. M. Afanas’ev and Yu. Kagan, Acta Crystallogr. A 24, 164 (1967).

    Google Scholar 

  54. A. M. Afanas’ev and Yu. Kagan, Zh. Eksp. Teor. Fiz. 25, 124 (1967).

    Google Scholar 

Download references

Funding

This study was supported by the Ministry of Science and Higher Education of the Russian Federation within a State assignment for the Federal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences and, in part, by the Russian Foundation for Basic Research, project no. 19-29-12043 mk.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. L. Nosik.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by Yu. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nosik, V.L. Quantum Optics of Mössbauer Radiation. Crystallogr. Rep. 67, 813–819 (2022). https://doi.org/10.1134/S1063774522060190

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774522060190

Navigation