Skip to main content
Log in

Electron spectrum in high-temperature cuprate superconductors

  • Electronic Properties of Solids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A microscopic theory for the electron spectrum of the CuO2 plane within an effective p-d Hubbard model is proposed. The Dyson equation for the single-electron Green’s function in terms of the Hubbard operators is derived and solved self-consistently for the self-energy evaluated in the noncrossing approximation. Electron scattering on spin fluctuations induced by the kinematic interaction is described by a dynamical spin susceptibility with a continuous spectrum. The doping and temperature dependence of electron dispersions, spectral functions, the Fermi surface, and the coupling constant λ are studied in the hole-doped case. At low doping, an arc-type Fermi surface and a pseudogap in the spectral function close to the Brillouin zone boundary are observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Damascelli, Z. Hussain, and Z.-X. Shen, Rev. Mod. Phys. 75, 473 (2003).

    Article  ADS  Google Scholar 

  2. M. V. Sadovskii, Usp. Fiz. Nauk 171, 539 (2001) [Phys. Usp. 44, 515 (2001)].

    Google Scholar 

  3. M. Eschrig, Adv. Phys. 55, 47 (2006).

    Article  ADS  Google Scholar 

  4. P. W. Anderson, Science 235, 1196 (1987); The Theory of Superconductivity in the High-T c Cuprates (Princeton Univ. Press, Princeton, 1997).

    Article  ADS  Google Scholar 

  5. J. Hubbard, Proc. R. Soc. London, Ser. A 276, 238 (1963); 284, 401 (1964).

    Article  ADS  Google Scholar 

  6. N. Bulut, Adv. Phys. 51, 1587 (2002).

    Article  ADS  Google Scholar 

  7. G. Ovchinnikov and V. V. Valkov, Hubbard Operators in the Theory of Strongly Correlated Electrons (Imperial College Press, London, 2004).

    MATH  Google Scholar 

  8. F. Mancini and A. Avella, Adv. Phys. 53, 537 (2004).

    Article  ADS  Google Scholar 

  9. A. Georges, G. Kotliar, W. Krauth, and M. Rozenberg, Rev. Mod. Phys. 68, 13 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  10. G. Kotliar, S. Y. Savrasov, K. Haule, et al., Rev. Mod. Phys. 78, 865 (2006); cond-mat/0511085.

    Article  ADS  Google Scholar 

  11. Th. Maier, M. Jarrel, Th. Pruschke, and M. H. Hettler, Rev. Mod. Phys. 77, 1027 (2005).

    Article  ADS  Google Scholar 

  12. A.-M. S. Tremblay, B. Kyung, and D. Sénéchal, Fiz. Nizk. Temp. 32, 561 (2006).

    Google Scholar 

  13. M. V. Sadovskii, I. A. Nekrasov, E. Z. Kuchinskii, et al., Phys. Rev. B 72, 155105 (2005).

    Google Scholar 

  14. E. Z. Kuchinskii, I. A. Nekrasov, and M. V. Sadovskii, Pis’ma Zh. Éksp. Teor. Fiz. 82, 217 (2005) [JETP Lett. 82, 198 (2005)].

    Google Scholar 

  15. E. Z. Kuchinskiĭ, I. A. Nekrasov, and M. V. Sadovskiĭ, Fiz. Nizk. Temp. 32, 528 (2006).

    Google Scholar 

  16. S. Krivenko, A. Avella, F. Mancini, and N. Plakida, Physica B (Amsterdam) 359–361, 666 (2005).

    Google Scholar 

  17. Y. Kakehashi and P. Fulde, Phys. Rev. B 70, 195102 (2004); J. Phys. Soc. Jpn. 74, 2397 (2005).

  18. D. N. Zubarev, Usp. Fiz. Nauk 71, 71 (1960) [Sov. Phys. Usp. 3, 320 (1960)].

    MathSciNet  Google Scholar 

  19. N. M. Plakida, R. Hayn, and J.-L. Richard, Phys. Rev. B 51, 16599 (1995).

    Google Scholar 

  20. N. M. Plakida and V. S. Oudovenko, Phys. Rev. B 59, 11949 (1999).

    Google Scholar 

  21. N. M. Plakida, L. Anton, S. Adam, and Gh. Adam, Zh. Éksp. Theor. Fiz. 124, 367 (2003) [JETP 97, 331 (2003)].

    Google Scholar 

  22. L. F. Feiner, J. H. Jefferson, and R. Raimondi, Phys. Rev. B 53, 8751 (1996).

    Article  ADS  Google Scholar 

  23. V. Yu. Yushankhai, V. S. Oudovenko, and R. Hayn, Phys. Rev. B 55, 15 562 (1997).

  24. V. J. Emery, Phys. Rev. Lett. 58, 2794 (1987); C. M. Varma, S. Schmitt-Rink, and E. Abrahams, Solid State Commun. 62, 681 (1987).

    Article  ADS  Google Scholar 

  25. J. Jaklič and P. Prelovśek, Phys. Rev. Lett. 74, 3411 (1995); Phys. Rev. Lett. 75, 1340 (1995).

    Article  ADS  Google Scholar 

  26. J. Bonca, P. Prelovśek, and I. Sega, Europhys. Lett. 10, 87 (1989).

    ADS  Google Scholar 

  27. Y. Vilk and A.-M. Tremblay, J. Phys. Chem. Solids 56, 1769 (1995).

    Article  ADS  Google Scholar 

  28. T. Yoshida, X. J. Zhou, M. Nakamura, et al., Phys. Rev. B 63, 220501 (2001).

  29. A. A. Kordyuk, S. V. Borisenko, A. Koitzsch, et al., Phys. Rev. B 71, 214513 (2005).

    Google Scholar 

  30. M. M. Korshunov, V. A. Gavrichkov, S. G. Ovchinnikov, et al., Phys. Rev. B 72, 165 104 (2005).

    Google Scholar 

  31. D. Sénéchal and A.-M. S. Tremblay, Phys. Rev. Lett. 92, 126401 (2004).

    Google Scholar 

  32. Z. Liu and E. Manousakis, Phys. Rev. B 45, 2425 (1992).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plakida, N.M., Oudovenko, V.S. Electron spectrum in high-temperature cuprate superconductors. J. Exp. Theor. Phys. 104, 230–244 (2007). https://doi.org/10.1134/S1063776107020082

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776107020082

PACS numbers

Navigation