Skip to main content
Log in

Nanospallation induced by an ultrashort laser pulse

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A femtosecond laser pulse with power density of 1013 to 1014 W/cm2 incident on a metal target causes ablation and ejection of the surface layer. The ejected laser plume has a complicated structure. At the leading front of the plume, there is a spall layer where the material is in a molten state. The spall layer is a remarkable part of the plume in that the liquid-phase density does not decrease with time elapsed. This paper reports theoretical and experimental studies of the formation, structure, and ejection of the laser plume. The results of molecular dynamics simulations and a theoretical survey of plume structure based on these results are presented. It is shown that the plume has no spall layer when the pulse fluence exceeds an evaporation threshold F ev. As the fluence increases from the ablation threshold F a to F ev, the spall-layer thickness for gold decreases from 100 nm to a few lattice constants. Experimental results support theoretical calculations. Microinterferometry combined with a pump-probe technique is used to obtain new quantitative data on spallation dynamics for gold. The ablation threshold is evaluated, the characteristic crater shape and depth are determined, and the evaporation threshold is estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. von der Linde and K. Sokolowski-Tinten, Appl. Surf. Sci. 154–155, 1 (2000).

    Article  Google Scholar 

  2. K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, and D. von der Linde, Appl. Surf. Sci. 127–129, 755 (1998).

    Article  Google Scholar 

  3. J. Koch, F. Korte, T. Bauer, et al., Appl. Phys. A: Mater. Sci. Process. 81, 325 (2005).

    Article  ADS  Google Scholar 

  4. S. K. Friedlander and D. Y. H. Pui, J. Nanopart. Res. 6, 313 (2004).

    Article  Google Scholar 

  5. T. E. Itina, J. Hermann, Ph. Delaporte, and M. Sentis, Appl. Surf. Sci. 208–209, 27 (2003).

    Article  Google Scholar 

  6. R. Hergenroeder, M. Miclea, and V. Hommes, Nanotechnology 17, 4065 (2006).

    Article  ADS  Google Scholar 

  7. B. S. Luk’yanchuk, W. Marine, and S. I. Anisimov, Laser Phys. 8, 291 (1998).

    Google Scholar 

  8. S. Amoruso, G. Ausanio, A. C. Barone, et al., J. Phys. B: At., Mol. Opt. Phys. 38, L329 (2005).

    Article  ADS  Google Scholar 

  9. X. Gu and H. M. Urbassek, Appl. Phys. B: At., Mol. Opt. Phys. 81, 675 (2005).

    ADS  Google Scholar 

  10. S. I. Kudryashov and S. D. Allen, J. Appl. Phys. 93, 4306 (2003).

    Article  ADS  Google Scholar 

  11. L. V. Zhigilei, E. Leveugle, B. J. Garrison, et al., Chem. Rev. 103, 321 (2003).

    Article  Google Scholar 

  12. D. B. Chrisey, A. Pique, R. A. McGill, et al., Chem. Rev. 103, 553 (2003).

    Article  Google Scholar 

  13. C. M. Pitsillides, E. K. Joe, X. Wei, et al., Biophys. J. 84, 4023 (2003).

    Article  Google Scholar 

  14. A. Vogel, J. Noack, G. Huettmann, and G. Paltauf, Appl. Phys. B: At., Mol. Opt. Phys. 81, 1015 (2005).

    ADS  Google Scholar 

  15. D. S. Ivanov and L. V. Zhigilei, Phys. Rev. Lett. 91, 105701 (2003).

    Google Scholar 

  16. G. É. Norman and V. V. Stegailov, Dokl. Akad. Nauk 386, 328 (2002) [Dokl. Phys. 47 (9), 667 (2002)].

    Google Scholar 

  17. E. Leveugle, D. S. Ivanov, and L. V. Zhigilei, Appl. Phys. A: Mater. Sci. Process. 79, 1643 (2004).

    ADS  Google Scholar 

  18. S. I. Anisimov, V. V. Zhakhovskiĭ, N. A. Inogamov, et al., Pis’ma Zh. Éksp. Teor. Fiz. 77(11), 731 (2003) [JETP Lett. 77 (11), 606 (2003)].

    Google Scholar 

  19. S. I. Anisimov, V. V. Zhakhovskiĭ, N. A. Inogamov, et al., Zh. Éksp. Teor. Fiz. 130(2), 212 (2006) [JETP 103 (2), 183 (2006)].

    Google Scholar 

  20. D. S. Ivanov, A. N. Volkov, G. O’Connor, and L. Z. Zhigilei, in Abstracts of the 5th International Conference on Photo-Excited Processes and Applications (ICPEPA-5), Charlottesville, United States, 2006 (Rep. C-5094, Charlottesville, 2006); http://www.seas.virginia.edu/academic/icpepa5/.

  21. M. Sob, L. G. Wang, and V. Vitek, Mater. Sci. Eng., A 234–236, 1075 (1997).

    Google Scholar 

  22. V. V. Zhakhovskiĭ, K. Nishihara, S. I. Anisimov, and N. A. Inogamov, Pis’ma Zh. Éksp. Teor. Fiz. 71(4), 241 (2000) [JETP Lett. 71 (4), 167 (2000)].

    Google Scholar 

  23. G. I. Kanel’, S. V. Razorenov, A. V. Utkin, and V. E. Fortov, Shock Wave Phenomena in Condensed Media (Yanus-K, Moscow, 1996) [in Russian].

    Google Scholar 

  24. T. Antoun, L. Seaman, D. R. Curran, et al., Spall Fracture (Springer-Verlag, New York, 2003).

    Google Scholar 

  25. N. A. Inogamov, S. I. Anisimov, and B. Retfeld, Zh. Éksp. Teor. Fiz. 115(6), 2091 (1999) [JETP 88 (6), 1143 (1999)].

    Google Scholar 

  26. V. Zhakhovskii, K. Nishihara, Y. Fukuda, and S. Shimojo, in The IEEE Proceeding of the 5th International Symposium on Cluster Computing and Grid (CCGrid 2005), Cardiff, United Kingdom, 2005, Vol. 2, p. 848; DC/0405086v1.

  27. M. B. Agranat, S. I. Ashitkov, A. A. Ivanov, et al., Kvantovaya Élektron. (Moscow) 34, 506 (2004).

    Article  Google Scholar 

  28. J. M. Liu, Opt. Lett. 7, 196 (1982).

    ADS  Google Scholar 

  29. V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, and D. von der Linde, J. Opt. Soc. Am. B 23, 1954 (2006).

    Article  ADS  Google Scholar 

  30. P. Mannion, J. Magee, and E. Coyne, Proc. SPIE-Int. Soc. Opt. Eng. 4876, 470 (2003).

    Google Scholar 

  31. M. B. Agranat, S. I. Anisimov, S. I. Ashitkov, et al., Pis’ma Zh. Éksp. Teor. Fiz. 83(11), 592 (2006) [JETP Lett. 83 (11), 501 (2006)].

    Google Scholar 

  32. S. I. Anisimov, N. A. Inogamov, Yu. V. Petrov, et al., in Abstracts of the 9th Annual Conference on Laser Ablation (COLA 2007), Tenerife, Spain, 2007 (Technical Program, Rep. MO-09, Tenerife, 2007), p. 20.

    Google Scholar 

  33. S. I. Anisimov, N. A. Inogamov, Yu. V. Petrov, et al., in Abstracts of the 9th Annual Conference on Laser Ablation (COLA 2007), Tenerife, Spain, 2007 (Technical Program, Rep. PMO-36, Tenerife, 2007), p. 62.

  34. Handbook of Optical Constants of Solids III, Ed. by E. D. Palik (Academic, New York, 1998), Vol. 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Inogamov.

Additional information

Original Russian Text © N.A. Inogamov, V.V. Zhakhovskii, S.I. Ashitkov, Yu.V. Petrov, M.B. Agranat, S.I. Anisimov, K. Nishihara, V.E. Fortov, 2008, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2008, Vol. 134, No. 1, pp. 5–28.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inogamov, N.A., Zhakhovskii, V.V., Ashitkov, S.I. et al. Nanospallation induced by an ultrashort laser pulse. J. Exp. Theor. Phys. 107, 1–19 (2008). https://doi.org/10.1134/S1063776108070017

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776108070017

PACS numbers

Navigation