Skip to main content
Log in

Mechanism of the hysteretic behavior of the magnetoresistance of granular HTSCs: The universal nature of the width of the magnetoresistance hysteresis loop

  • Order, Disorder, and Phase Transition in Condensed Systems
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The hysteretic behavior of the magnetoresistance R(H) of granular high-temperature superconductors (HTSCs) of the Y-Ba-Cu-O, Bi-Ca-Sr-Cu-O, and La-Sr-Cu-O classical systems is investigated for transport current densities lower and higher than the critical density (at H = 0). All systems exhibit universal behavior of the width of the magnetoresistance hysteresis loop: independence of transport current under identical external conditions. This means that flux trapping in HTSC grains is the main mechanism controlling the hysteretic behavior of the magnetoresistance of granular HTSCs, while pinning of Josephson vortices in the intragranular medium makes no appreciable contribution to the formation of magnetoresistance hysteresis (when transport current flows through the sample). Experimental data on relaxation of residual resistance after the action of a magnetic field also confirm this conclusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. J. Quian, Z. M. Yang, K. Y. Chen, B. Zhou, J. W. Qiu, B. C. Miao, and Y. M. Cai, Phys. Rev. B: Condens. Matter 39, 4701 (1989).

    ADS  Google Scholar 

  2. K. Y. Chen and Y. J. Quian, Physica C (Amsterdam) 159, 131 (1989).

    ADS  Google Scholar 

  3. J. E. Evetts and B. A. Glowacki, Cryogenics 28, 641 (1988).

    Article  ADS  Google Scholar 

  4. M. E. McHenry, P. M. P. Maley, and J. O. Willis, Phys. Rev. B: Condens. Matter 40, 2666 (1989).

    ADS  Google Scholar 

  5. A. I. Ponomarev, K. R. Krylov, M. V. Medvedev, et al., Sverkhprovodimost: Fiz., Khim., Tekh. 4, 2149 (1991).

    Google Scholar 

  6. L. Ji, M. S. Rzchowski, N. Anand, and M. Tinkham, Phys. Rev. B: Condens. Matter 47, 470 (1993).

    ADS  Google Scholar 

  7. M. N. Kunchur and T. R. Askew, J. Appl. Phys. 84, 6763 (1998).

    Article  ADS  Google Scholar 

  8. N. D. Kuz’michev, Pis’ma Zh. Éksp. Teor. Fiz. 74(5), 291 (2001) [JETP Lett. 74 (5), 262 (2001)].

    Google Scholar 

  9. P. Mune, E. Govea-Alcaide, and R. F. Jardim, Physica C (Amsterdam) 354, 275 (2001).

    ADS  Google Scholar 

  10. D. Daghero, P. Mazzetti, A. Stepanescu, P. Tura, and A. Masoero, Phys. Rev. B: Condens. Matter 66, 184514 (2002).

    Google Scholar 

  11. C. A. M. dos Santos, M. S. da Luz, B. Ferreira, and A. J. S. Machado, Physica C (Amsterdam) 391, 345 (2003).

    ADS  Google Scholar 

  12. P. Mune, F. C. Fonesca, R. Muccillo, and R. F. Jardim, Physica C (Amsterdam) 390, 363 (2003).

    ADS  Google Scholar 

  13. I. Felner, E. Galstyan, B. Lorenz, D. Cao, Y. S. Wang, Y. Y. Xue, and C. W. Chu, Phys. Rev. B: Condens. Matter 67, 134506 (2003).

    Google Scholar 

  14. V. V. Derevyanko, T. V. Sukhareva, and V. A. Finkel’, Fiz. Tverd. Tela (St. Petersburg) 48(8), 1374 (2006) [Phys. Solid State 48 (8), 1455 (2006)].

    Google Scholar 

  15. D. A. Balaev, D. M. Gokhfel’d, A. A. Dubrovskiĭ, S. I. Popkov, K. A. Shaikhutdinov, and M. I. Petrov, Zh. Éksp. Teor. Fiz. 132(6), 1340 (2007) [JETP 105 (6), 1174 (2007)].

    Google Scholar 

  16. V. V. Derevyanko, T. V. Sukhareva, and V. A. Finkel, Zh. Tekh. Fiz. 78(3), 36 (2008) [Tech. Phys. 53 (3), 321 (2008)].

    Google Scholar 

  17. T. V. Sukhareva and V. A. Finkel’, Fiz. Tverd. Tela (St. Petersburg) 50(6), 961 (2008) [Phys. Solid State 50 (6), 1001 (2008)]; Zh. Éksp. Teor. Fiz. 134 (5), [JETP 107 (5), 787 (2008)].

    Google Scholar 

  18. É. B. Sonin, Pis’ma Zh. Éksp. Teor. Fiz. 47(8), 415 (1988) [JETP Lett. 47 (8), 496 (1988)].

    ADS  Google Scholar 

  19. D. A. Balaev, A. A. Dubrovskiĭ, S. I. Popkov, K. A. Shaĭkhutdinov, and M. I. Petrov, Fiz. Tverd. Tela (St. Petersburg) 50(6), 972 (2008) [Phys. Solid State 50 (6), 1014 (2008)].

    Google Scholar 

  20. A. D. Balaev, Yu. V. Boyarshinov, M. I. Karpenko, and B. P. Khrustalev, Prib. Tekh. Éksp., No. 3, 167 (1985).

  21. A. C. Wright, K. Zhang, and A. Erbil, Phys. Rev. B: Condens. Matter 44, 863 (1991).

    ADS  Google Scholar 

  22. C. Gaffney, H. Petersen, and R. Bednar, Phys. Rev. B: Condens. Matter 48, 3388 (1993).

    ADS  Google Scholar 

  23. D. Lopez and F. de la Cruz, Phys. Rev. B: Condens. Matter 43, 11478 (1991).

    ADS  Google Scholar 

  24. H. S. Gamchi, G. J. Russel, and K. N. R. Taylor, Phys. Rev. B: Condens. Matter 50, 12950 (1994).

    Google Scholar 

  25. D. A. Balaev, K. A. Shaihutdinov, S. I. Popkov, D. M. Gokhfeld, and M. I. Petrov, Supercond. Sci. Technol. 17, 175 (2004).

    Article  ADS  Google Scholar 

  26. M. Ionesku, B. Winton, T. Silver, S. X. Dou, and R. Ramer, Appl. Phys. Lett. 84, 5335 (2004).

    Article  ADS  Google Scholar 

  27. A. V. Mitin, Sverkhprovodimost: Fiz. Khim. Tekh. 7(1), 62 (1994).

    MathSciNet  Google Scholar 

  28. A. Kilic, K. Kilic, S. Senoussi, and K. Demir, Physica C (Amsterdam) 294, 203 (1998).

    Google Scholar 

  29. G. Blatter, M. V. Feigel’man, V. B. Geshkebein, A. I. Larkin, and V. M. Vinokur, Rev. Mod. Phys. 66, 1125 (1994).

    Article  ADS  Google Scholar 

  30. H. S. Lessure, S. Simizu, and S. G. Sankar, Phys. Rev. B: Condens. Matter 40, 5165 (1989).

    ADS  Google Scholar 

  31. Y. Yeshurn, A. P. Malozemoff, and A. Shaulov, Rev. Mod. Phys. 68, 911 (1993).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Balaev.

Additional information

Original Russian Text © D.A. Balaev, A.A. Dubrovskiĭ, K.A. Shaikhutdinov, S.I. Popkov, D.M. Gokhfeld, Yu.S. Gokhfeld, M.I. Petrov, 2009, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2009, Vol. 135, No. 2, pp. 271–279.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balaev, D.A., Dubrovskiĭ, A.A., Shaikhutdinov, K.A. et al. Mechanism of the hysteretic behavior of the magnetoresistance of granular HTSCs: The universal nature of the width of the magnetoresistance hysteresis loop. J. Exp. Theor. Phys. 108, 241–248 (2009). https://doi.org/10.1134/S106377610902006X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377610902006X

PACS numbers

Navigation