Skip to main content
Log in

Conversion of dark matter axions to photons in magnetospheres of neutron stars

  • Nuclei, Particles, Fields, Gravitation, and Astrophysics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We propose a new method to detect observational appearance of dark matter axions. The method utilizes radio observations of neutron stars. It is based on the conversion of axions to photons in strong magnetic fields of neutron stars (the Primakoff effect). If the conversion occurs, the radio spectrum of the object has a very distinctive feature—a narrow spike at the frequency corresponding to the rest mass of the axion. For example, if the coupling constant of the photon-axion interaction is M = 1010 GeV, the density of dark matter axions is ρ = 10−24 g cm−3 and the axion mass is 5 μeV; then the flux from a strongly magnetized (1014 G) neutron star at the distance 300 pc from the Sun is expected to be about few tenths of millijansky at a frequency of about 1200 MHz in a bandwidth of about 3 MHz. Close-by X-ray dim isolated neutron stars are proposed as good candidates to look for such radio emission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. J. E. Peebles, Int. J. Mod. Phys. A 16, 4223 (2001).

    Article  ADS  Google Scholar 

  2. M. Kamionkowski, submitted for publication in Visions of Discovery (in Honor of Charles Townes), to be published by Cambridge University; arXiv:0706.2986.

  3. R. D. Peccei and H. R. Quinn, Phys. Rev. D: Part. Fields 16, 1791 (1977).

    ADS  Google Scholar 

  4. H. Primakoff, Phys. Rev. 81, 899 (1951).

    Article  ADS  Google Scholar 

  5. C. Eleftheriadis et al. (CAST Collab.) arXiv:astroph/ 0305534v1.

  6. Y. Inoue, T. Namba, S. Moriyama, M. Minowa, Y. Takasu, T. Horiuchi, and A. Yamamoto, Phys. Lett. B 536, 18 (2002).

    Article  ADS  Google Scholar 

  7. K. Zioutas, D. J. Thompson, and E. A. Paschos, Phys. Lett. B 443, 201 (1998).

    Article  ADS  Google Scholar 

  8. H. Davoudiasl and P. Huber, Phys. Rev. Lett. 97, 141 302 (2006).

    Google Scholar 

  9. L. Duffy, P. Sikivie, D. B. Tanner, S. Asztalos, C. Hagmann, D. Kinion, L. J. Rosenberg, K. van Bibber, D. Yu, and R. F. Bradley, Phys. Rev. Lett. 95, 091 304 (2005).

    Google Scholar 

  10. Yu. N. Gnedin and S. V. Krasnikov, Zh. Eksp. Teor. Fiz. 102(6), 1729 (1992) [Sov. Phys. JETP 75 (6), 933 (1992)].

    ADS  Google Scholar 

  11. Yu. N. Gnedin, Astron. Astrophys. Trans. 5, 163 (1994).

    Article  ADS  Google Scholar 

  12. P. Sikivie, arXiv:hep-ph/0606014.

  13. M. Yu. Khlopov, A. S. Sakharov, and D. D. Sokoloff, Nucl. Phys. B, Proc. Suppl. 72, 105 (1999).

    Article  ADS  Google Scholar 

  14. P. Sikivie, Phys. Rev. Lett. 51, 1415 (1983).

    Article  ADS  Google Scholar 

  15. N. Rea, S. Zane, R. Turolla, M. Lyutikov, and D. Götz, AIP Conf. Proc. 983, 292 (2008).

    Article  ADS  Google Scholar 

  16. D. Götz, S. Mereghetti, A. Tiengo, and P. Esposito, Astron. Astrophys. 449, L31 (2006).

    Article  ADS  Google Scholar 

  17. P. Goldreich and W. H. Julian, Astrophys. J. 157, 869 (1969).

    Article  ADS  Google Scholar 

  18. S. B. Popov, Phys. Part. Nucl. 39, 1130 (2008); arXiv:astro-ph/0610593.

    Article  Google Scholar 

  19. B. Posselt, S. B. Popov, F. Haberl, J. Truemper, R. Turolla, and R. Neuhaeuser, Astrophys. Space Sci. 306, 171 (2007).

    Article  ADS  Google Scholar 

  20. M. H. van Kerkwijk and D. L. Kaplan, Astrophys. J. 673, L163 (2008).

    Article  ADS  Google Scholar 

  21. M. Lyutikov, arXiv:0708.1024.

  22. I. Goldman and S. Nussinov, Phys. Rev. D: Part. Fields 40, 3221 (1989).

    ADS  Google Scholar 

  23. V. I. Kondratiev, M. Burgay, A. Possenti, M. A. McLaughlin, D. R. Lorimer, R. Turolla, S. Popov, and S. Zane, arXiv:0710.1648.

  24. V. M. Malofeev, O. I. Malov, and D. A. Teplykh, Astrophys. Space Sci. 308, 211 (2007).

    Article  ADS  Google Scholar 

  25. B. C. Joshi et al., poster at COSPAR-2008 (work in progress).

  26. B. W. Stappers, A. G. J. van Leeuwen, M. Kramer, M. Kramer, D. Stinebring, and J. Hessels, arXiv:astroph/0701229.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Pshirkov.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pshirkov, M.S., Popov, S.B. Conversion of dark matter axions to photons in magnetospheres of neutron stars. J. Exp. Theor. Phys. 108, 384–388 (2009). https://doi.org/10.1134/S1063776109030030

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776109030030

PACS numbers

Navigation