Skip to main content
Log in

Investigation of the dynamics of a percolation transition under rapid compression of a nanoporous body-nonwetting liquid system

  • Order, Disorder, and Phase Transition in Condensed Systems
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The dynamics of infiltration of a nanoporous body with a nonwetting liquid under rapid compression is studied experimentally and theoretically. Experiments are carried out on systems formed by a hydrophobic nanoporous body Libersorb 23, water, and an aqueous solution of CaCl2 at a compression rate of \( \dot p \) ≥ 104 atm/s. It is found that the infiltration begins and occurs at a new constant pressure independent of the compression energy and viscosity of the liquid. The time of infiltration and the filled volume increase with the compression energy. A model of infiltration of a nanoporous body with a nonwetting liquid is constructed; using this model, infiltration is described as a spatially nonuniform process with the help of distribution functions for clusters formed by pores accessible to infiltration and filled ones. On the basis of the proposed system of kinetic equations for these distribution functions, it is shown that under rapid compression, the infiltration process must occur at a constant pressure p c whose value is controlled by a new infiltration threshold θ c = 0.28 for the fraction of accessible pores, which is higher than percolation threshold θ c0 = 0.18. Quantity θ c is a universal characteristic of porous bodies. In the range θ c0 < θ < θ c , infiltration of the porous body should not be observed. It is shown that the solution to the system of kinetic equations leads to a nonlinear response by the medium to an external action (rapid compression), which means the compensation of this action by percolation of the liquid from clusters of filled pores of finite size to an infinitely large cluster of accessible but unfilled pores. As a result of such compensation, infiltration is independent of the viscosity of the liquid. It is found that all experimental results can be described quantitatively in the proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Sahimi, Rev. Mod. Phys. 65, 1393 (1993).

    Article  ADS  Google Scholar 

  2. A. H. Thompson, A. J. Katz, and R. A. Raschke, Phys. Rev. Lett. 58, 29 (1987).

    Article  ADS  Google Scholar 

  3. J. Feder, Fractals (Plenum, New York, 1988; Mir, Moscow, 1991).

    MATH  Google Scholar 

  4. V. N. Bogomolov, Usp. Fiz. Nauk 124, 171 (1978) [Sov. Phys.—Usp. 21, 77 (1978)].

    MathSciNet  Google Scholar 

  5. A. Yu. Fadeev and V. A. Eroshenko, Ross. Khim. Zh. 39(6), 93 (1995); V. A. Eroshenko and A. Yu. Fadeev, Zh. Fiz. Khim. 70 (8), 1482 (1996) [Russ. J. Phys. Chem. 70 (8), 1380 (1996)].

    Google Scholar 

  6. G. P. Matthews, C. J. Ridgway, and M. C. Spearing, J. Colloid Interface Sci. 171, 8 (1995).

    Article  Google Scholar 

  7. J. Kloubek, J. Colloid Interface Sci. 163, 10 (1994).

    Article  Google Scholar 

  8. V. D. Borman, A. M. Grekhov, and V. I. Troyan, Zh. Éksp. Teor. Fiz. 118(1), 193 (2000) [JETP 91 (1), 170 (2000)].

    Google Scholar 

  9. X. Kong, F. B. Surani, and Y. Qiao, J. Mater. Res. 20, 1042 (2005).

    Article  ADS  Google Scholar 

  10. Y. Qiao and X. Kong, Phys. Scr. 71, 27 (2005).

    Article  MATH  ADS  Google Scholar 

  11. F. B. Surani, X. Kong, and Y. Qiao, Appl. Phys. Lett. 87, 251906 (2005).

    Google Scholar 

  12. Y. Qiao and X. Kong, Phys. Scr. 71, 27 (2005).

    Article  MATH  ADS  Google Scholar 

  13. X. Kong and Y. Qiao, Appl. Phys. Lett. 86, 151919 (2005).

  14. C. V. Suciu, T. Iwatsubo, and S. Deki, J. Colloid Interface Sci. 259, 62 (2003).

    Article  Google Scholar 

  15. A. Han, X. Kong, and Y. Qiao, J. Appl. Phys. 100, 014308 (2006).

  16. F. B. Surani and Y. Qiao, J. Appl. Phys. 100, 034311 (2006).

    Google Scholar 

  17. F. B. Surani, A. Han, and Y. Qiao, Appl. Phys. Lett. 89, 093 108 (2006).

    Google Scholar 

  18. X. Chen, F. B. Surani, X. Kong, et al., Appl. Phys. Lett. 89, 241 918 (2006).

  19. X. Kong and Y. Qiao, J. Appl. Phys. 99, 064 313 (2006).

  20. V. D. Borman, A. A. Belogorlov, A. M. Grekhov, G. V. Lisichkin, V. N. Tronin, and V. I. Troyan, Zh. Éksp. Teor. Fiz. 127(2), 431 (2005) [JETP 100 (2), 385 (2005)].

    Google Scholar 

  21. L. E. Nielsen and R. F. Lande, Mechanical Properties of Polymers and Composites (Marcell Dekker, New York, 1993).

    Google Scholar 

  22. V. N. Bogomolov, Phys. Rev. B: Condens. Matter 51, 17040 (1995).

    Google Scholar 

  23. V. D. Borman, A. A. Belogorlov, A. M. Grekhov, G. V. Lisichkin, V. N. Tronin, and V. I. Troyan, Pis’ma Zh. Tekh. Fiz. 30(23), 1 (2004) [Tech. Phys. Lett. 30 (12), 973 (2004)].

    Google Scholar 

  24. B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped Semiconductors (Nauka, Moscow, 1979; Springer, Berlin, 1984).

    Google Scholar 

  25. M. B. Isichenko, Rev. Mod. Phys. 64, 961 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  26. F. B. Surani, X. Kong, D. B. Panchal, and Y. Qiao, Appl. Phys. Lett. 87, 163 111 (2005).

    Google Scholar 

  27. V. D. Borman, A. A. Belogorlov, A. M. Grekhov, V. N. Tronin, and V. I. Troyan, Pis’ma Zh. Éksp. Teor. Fiz. 74(5), 287 (2001) [JETP Lett. 74 (5), 258 (2001)].

    Google Scholar 

  28. K. S. Basniev, I. N. Kochina, and V. M. Maksimov, Underground Hydromechanics (Nedra, Moscow, 1993) [in Russian].

    Google Scholar 

  29. The Chemistry of Grafted Surface Compounds, Ed. by G. V. Lisichkin (Fizmatlit, Moscow, 2003) [in Russian].

    Google Scholar 

  30. Handbook of Physical Quantities, Ed. by I. S. Grigoriev and E. Z. Meilikhov (Énergoatomizdat, Moscow, 1991; CRC Press, Boca Raton, FL, United States, 1997).

    Google Scholar 

  31. Handbook of Chemistry and Physics, Ed. by D. R. Lide (CRC Press, London, 1994).

    Google Scholar 

  32. Yu. Yu. Tarasevich, Percolation: Theory, Applications, and Algorithms (URSS, Moscow, 2002).

    Google Scholar 

  33. A. A. Abrikosov, Pis’ma Zh. Éksp. Teor. Fiz. 29(1), 72 (1979) [JETP Lett. 29 (1), 65 (1979)].

    Google Scholar 

  34. P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, New York, 1953; Inostrannaya Literatura, Moscow, 1958), Vol. 2.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. D. Borman.

Additional information

Original Russian Text © V.D. Borman, A.A. Belogorlov, G.V. Lisichkin, V.N. Tronin, V.I. Troyan, 2009, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2009, Vol. 135, No. 3, pp. 446–469.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borman, V.D., Belogorlov, A.A., Lisichkin, G.V. et al. Investigation of the dynamics of a percolation transition under rapid compression of a nanoporous body-nonwetting liquid system. J. Exp. Theor. Phys. 108, 389–410 (2009). https://doi.org/10.1134/S1063776109030042

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776109030042

PACS numbers

Navigation