Skip to main content
Log in

Nanomechanical properties and phase transitions in a double-walled (5,5)@(10,10) carbon nanotube: ab initio calculations

  • Order, Disorder, and Phase Transition in Condensed Systems
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The structure and elastic properties of (5,5) and (10,10) nanotubes, as well as barriers for relative rotation of the walls and their relative sliding along the axis in a double-walled (5,5)@(10,10) carbon nanotube, are calculated using the density functional method. The results of these calculations are the basis for estimating the following physical quantities: ultimate shear strengths and diffusion coefficients for relative sliding along the axis and rotation of the walls, as well as frequencies of relative rotational and translational oscillations of the walls. The commensurability-incommensurability phase transition is analyzed. The length of the incommensurability defect is estimated on the basis of ab initio calculations. It is proposed that a double-walled carbon nanotube be used as a plain bearing. The possibility of experimental verification of the results is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Cumings and A. Zettl, Science (Washington) 289, 602 (2000).

    Article  ADS  Google Scholar 

  2. A. Kis, K. Jensen, S. Aloni, W. Mickelson, and A. Zettl, Phys. Rev. Lett. 97, 025 501 (2006).

    Google Scholar 

  3. A. M. Fennimore, T. D. Yuzvinsky, W. Q. Han, M. S. Fuhrer, J. Cumings, and A. Zettl, Nature (London) 424, 408 (2003).

    Article  ADS  Google Scholar 

  4. B. Bourlon, D. C. Glatti, L. Forró, and A. Bachtold, Nano Lett. 4, 709 (2004).

    Article  ADS  Google Scholar 

  5. V. V. Deshpande, H.-Y. Chiu, H. W. Ch. Postma, C. Mikó, L. Forró, and M. Bockrath, Nano Lett. 6, 1092 (2006).

    Article  ADS  Google Scholar 

  6. Q. Zheng and Q. Jiang, Phys. Rev. Lett. 88, 045503 (2002).

  7. Z. C. Tu and X. Hu, Phys. Rev. 72, 033404 (2005).

  8. R. Saito, R. Matsuo, T. Kimura, G. Dresselhaus, and M. S. Dresselhaus, Chem. Phys. Lett. 348, 187 (2001).

    Article  ADS  Google Scholar 

  9. Yu. E. Lozovik, A. V. Minogin, and A. M. Popov, Phys. Lett. A 313, 112 (2003).

    Article  ADS  Google Scholar 

  10. Yu. E. Lozovik, A. V. Minogin, and A. M. Popov, Pis’ma Zh. Éksp. Teor. Fiz. 77(11), 759 (2003) [JETP Lett. 77 (11), 631 (2003)].

    Google Scholar 

  11. E. Bichoutskaia, A. M. Popov, M. I. Heggie, and Yu. E. Lozovik, Fullerenes, Nanotubes, Carbon Nanostruct. 14, 131 (2006).

    Article  Google Scholar 

  12. E. Bichoutskaia, A. M. Popov, Yu. E. Lozovik, G. S. Ivanchenko, and N. G. Lebedev, Phys. Lett. A 366, 480 (2007).

    Article  ADS  Google Scholar 

  13. A. M. Popov, E. Bichoutskaia, Yu. E. Lozovik, and A. S. Kulish, Phys. Status Solidi A 204, 1911 (2007).

    Article  ADS  Google Scholar 

  14. Yu. E. Lozovik and A. M. Popov, Usp. Fiz. Nauk 177(7), 786 (2007) [Phys.—Usp. 50 (7), 749 (2007)].

    Article  Google Scholar 

  15. R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Appl. Phys. Lett. 60, 2204 (1992).

    Article  ADS  Google Scholar 

  16. R. A. Jishi, M. S. Dresselhaus, and G. Dresselhaus, Phys. Rev. B: Condens. Matter 47, 16 671 (1993).

    Google Scholar 

  17. L. X. Benedict, N. G. Chopra, M. L. Cohen, A. Zettl, S. G. Louie, and V. H. Crespi, Chem. Phys. Lett. 286, 490 (1998).

    Article  ADS  Google Scholar 

  18. A. N. Kolmogorov and V. H. Crespi, Phys. Rev. Lett. 85, 4727 (2000).

    Article  ADS  Google Scholar 

  19. M. Damnjanović, T. Vuković, and I. Milošević, Eur. Phys. J. B 25, 131 (2002).

    Article  ADS  Google Scholar 

  20. T. Vuković, M. Damnjanović, and I. Milošević, Physica E (Amsterdam) 16, 256 (2003).

    Google Scholar 

  21. A. V. Belikov, A. G. Nikolaev, Yu. E. Lozovik, and A. M. Popov, Chem. Phys. Lett. 385, 72 (2004).

    Article  ADS  Google Scholar 

  22. J.-C. Charlier and J. P. Michenaud, Phys. Rev. Lett. 70, 1858 (1993).

    Article  ADS  Google Scholar 

  23. Y. K. Kwon and D. Tomanek, Phys. Rev. B: Condens. Matter 58, 16 001 (1998).

    Google Scholar 

  24. A. H. R. Palser, Phys. Chem. Chem. Phys. 1, 4459 (1999).

    Article  Google Scholar 

  25. E. Bichoutskaia, A. M. Popov, A. El-Barbary, M. I. Heggie, and Yu. E. Lozovik, Phys. Rev. B: Condens. Matter 71, 113 403 (2005).

    Google Scholar 

  26. E. Bichoutskaia, A. M. Popov, M. I. Heggie, and Yu. E. Lozovik, Phys. Rev. B: Condens. Matter 73, 045435 (2006).

    Google Scholar 

  27. T. W. Ebbesen and P. M. Ajayan, Nature (London) 358, 220 (1992).

    Article  ADS  Google Scholar 

  28. J. L. Hutchison, N. A. Kiselev, E. P. Krinichnaya, A. V. Krestinin, R. O. Loutfy, A. P. Morawsky, V. E. Muradyan, E. D. Obraztsova, J. Sloan, S. V. Terekhov, and D. N. Zakharov, Carbon 39, 761 (2001).

    Article  Google Scholar 

  29. L. Ci, Z. Rao, Z. Zhou, D. Tang, X. Yan, Y. Liang, D. Liu, H. Yuan, W. Zhou, G. Wang, W. Liu, and S. Xie, Chem. Phys. Lett. 359, 63 (2002).

    Article  ADS  Google Scholar 

  30. S. Bandow, M. Takizawa, K. Hirahara, M. Yudasaka, and S. Iijima, Chem. Phys. Lett. 337, 48 (2001).

    Article  ADS  Google Scholar 

  31. J. Sloan, R. E. Dunin-Borkowski, J. L. Hutchison, K. S. Coleman, V. C. Williams, J. B. Claridge, A. P. E. York, C. Xu, S. R. Bailey, G. Brown, S. Friedrichs, and M. L. H. Green, Chem. Phys. Lett. 316, 191 (2000).

    Article  ADS  Google Scholar 

  32. D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).

    Article  ADS  Google Scholar 

  33. G. Kresse and J. Furthmüller, Phys. Rev. B: Condens. Matter 54, 11169 (1996).

    Google Scholar 

  34. G. Kresse and J. Hafner, J. Phys.: Condens. Matter 6, 8245 (1994).

    Article  ADS  Google Scholar 

  35. H. J. Monkhorst and J. D. Pack, Phys. Rev. B: Solid State 13, 5188 (1976).

    MathSciNet  ADS  Google Scholar 

  36. N. Mounet and N. Marzari, Phys. Rev. B: Condens. Matter 71, 205214 (2005).

    Google Scholar 

  37. G. van Lier, G. van Alsenoy, V. van Doren, and P. Geerlings, Chem. Phys. Lett. 326, 181 (2000).

    Article  Google Scholar 

  38. D. Sánchez-Portal, E. Artacho, J. M. Soler, A. Rubio, and P. Ordejón, Phys. Rev. B: Condens. Matter 59, 12678 (1999).

    Google Scholar 

  39. S. L. Mielke, D. Troya, S. Zhang, J.-L. Li, S. Xiao, R. Car, R. S. Ruoff, G. C. Schatz, and T. Belytschko, Chem. Phys. Lett. 390, 413 (2004).

    Article  ADS  Google Scholar 

  40. T. Ozaki, Y. Iwasa, and T. Mitani, Phys. Rev. Lett. 84, 1712 (2000).

    Article  ADS  Google Scholar 

  41. E. Hernandez, C. Goze, P. Bernier, and A. Rubio, Phys. Rev. Lett. 80, 4502 (1998).

    Article  ADS  Google Scholar 

  42. M. Damnjanović, I. Milošević, T. Vuković, and R. Sredanović, Phys. Rev. B: Condens. Matter 60, 2728 (1999).

    ADS  Google Scholar 

  43. M. Damnjanović, E. Dobardzić, I. Milošević, T. Vuković, and B. Nikolić, New J. Phys. 5, 148.1 (2003).

    Google Scholar 

  44. Yu. E. Lozovik and A. M. Popov, Chem. Phys. Lett. 328, 355 (2000).

    Article  ADS  Google Scholar 

  45. A. Hashimoto, K. Suenaga, K. Urita, T. Shimada, T. Sugai, S. Bandow, H. Shinohara, and S. Iijima, Phys. Rev. Lett. 94, 045504 (2005).

    Google Scholar 

  46. L. Zhang, Z. Jia, L. Huang, S. O’Brien, and Z. Yu, J. Phys. Chem. C 112, 13893 (2008).

    Google Scholar 

  47. E. Dobardžić, I. Milošević, T. Vuković, B. Nikolić, and M. Damnjanović, Eur. Phys. J. B 34, 409 (2003).

    Article  ADS  Google Scholar 

  48. T. Vuković, S. Dmitrović, and E. Dobardžić, Nanotechnology 17, 747 (2006).

    Article  ADS  Google Scholar 

  49. K. Hirahara, M. Kociak, S. Bandow, T. Nakahira, K. Itoh, Y. Saito, and S. Iijima, Phys. Rev. B: Condens. Matter 73, 195420 (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Popov.

Additional information

Original Russian Text © A. M. Popov, Yu.E. Lozovik, A.S. Sobennikov, A.A. Knizhnik, 2009, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2009, Vol. 135, No. 4, pp. 711–720.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popov, A.M., Lozovik, Y.E., Sobennikov, A.S. et al. Nanomechanical properties and phase transitions in a double-walled (5,5)@(10,10) carbon nanotube: ab initio calculations. J. Exp. Theor. Phys. 108, 621–628 (2009). https://doi.org/10.1134/S1063776109040104

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776109040104

PACS numbers

Navigation