Skip to main content
Log in

Structural and magnetic heterogeneities, phase transitions, and magnetoresistance and magnetoresonance properties of the composition ceramic La0.7Pb0.3 − x Sn x MnO3

  • Order, Disorder, and Phase Transition in Condensed System
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The La0.7Pb0.3 − x Sn x MnO3 composition ceramic is studied by X-ray diffraction, resistive, magnetic, electron-microscopic, magnetoresistance, and NMR (55Mn, 139La) methods. The substitution of tin for lead results in structural phase separation into the basic perovskite (\(R\bar 3c\)) and spinell (Fd3m), phases: La0.7Pb0.3 − x Sn x MnO3 → La0.7 − x Pb0.3 − x MnO3 + 0.5xLa2Sn2O7. Changes in the lattice parameter of the basic perovskite \(R\bar 3c\) structure, the electrical resistivity, and the magnetic and magnetoresistance properties are caused by changes in the composition and content of a conducting perovskite ferromagnetic phase, the Mn3+/Mn4+ ratio, and the imperfection of vacancy and cluster types. An in-plane nanostructured cluster is formed by Mn2+ ions located in distorted A-positions. The detected anomalous magnetic hysteresis is induced by the appearance of a unidirectional exchange anisotropy at the boundary of an in-plane antifer-romagnetic cluster coherently joined with a ferromagnetic matrix structure. The broad asymmetric NMR spectra of 55Mn and 139La indicate a high-frequency Mn3+ ↔ Mn4+ superexchange and a nonuniform distribution of ions and defects. The constructed phase diagram characterizes a strong relation between the magnetic and transport properties in rare-earth manganites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Mandal and B. Ghosh, Phys. Rev. B: Condens. Matter 68, 014422 (2003).

    Article  ADS  Google Scholar 

  2. J. C. Loudon, S. Cox, A. J. Willims, J. P. Attfield, P. B. Littlewood, P. A. Midgley, and N. D. Mathur, Phys. Rev. Lett. 94, 097202 (2005).

    Article  ADS  Google Scholar 

  3. Ashutosh Tiwari and K. P. Rajeev, Phys. Rev. B: Condens. Matter 60, 10591 (1999).

    Article  ADS  Google Scholar 

  4. S. G. Kaplan, M. Quijada, H. D. Drew, D. B. Tanner, G. C. Xiong, R. Ramesh, C. Kwon, and T. Venkatesan, Phys. Rev. Lett. 77, 2081 (1996).

    Article  ADS  Google Scholar 

  5. N. A. Babushkina, E. A. Chistotina, I. A. Bobrikov, A. M. Balagurov, V. Yu. Pomjakushin, A. I. Kurbakov, V. A. Trunov, O. Yu. Gorbenko, A. R. Kaul, and K. I. Kugel, J. Phys.: Condens. Matter 17, 1975 (2005).

    Article  ADS  Google Scholar 

  6. E. L. Nagaev, Phys. Rep. 346, 387 (2001).

    Article  ADS  Google Scholar 

  7. M. B. Salamon and M. Jaime, Rev. Mod. Phys. 73, 583 (2001).

    Article  ADS  Google Scholar 

  8. E. Dagotto, J. Hotta, and A. Moreo, Phys. Rep. 344, 1 (2001).

    Article  ADS  Google Scholar 

  9. S. Khizroev, Y. Hijazi, R. Chomko, S. Mukherjee, R. Chantrell, X. Wu, R. Carley, and D. Litvinov, Appl. Phys. Lett. 86, 042502 (2005).

    Article  ADS  Google Scholar 

  10. F. Yang, L. Méchin, J.-M. Routoure, B. Guillet, and R. A. Chakalov, J. Appl. Phys. 99, 024903 (2006).

    Article  ADS  Google Scholar 

  11. V. Dyakonov, S. Pitchota, R. Piotrowski, A. Szewczyk, H. Szymczak, V. Mikhaylov, A. Shemiakov, A. Pashchenko, and V. P. Pashchenko, Solid State Phenom. 154, 157 (2009).

    Article  Google Scholar 

  12. N. Veglio, F. J. Bermejo, J. Gutierrez, J. M. Barandiarán, A. Peña, M. A. González, P. P. Romano, and C. Mondelli, Phys. Rev. B: Condens. Matter 71, 212402 (2005).

    Article  ADS  Google Scholar 

  13. V. N. Krivoruchko, V. P. Pashchenko, Yu. V. Medvedev, S. I. Khartsev, A. A. Shemyakov, M. M. Savosta, V. I. Kamenev, A. D. Loyko, G. K. Volkova, and V. I. Volkov, Phys. Lett. A 245, 163 (1998).

    Article  ADS  Google Scholar 

  14. L. Morales, A. Caneiro, R. D. Sánchez, and D. Vega, J. Magn. Magn. Mater. 226–230, 806 (2001).

    Article  Google Scholar 

  15. V. P. Pashchenko, S. I. Khartsev, O. P. Cherenkov, A. A. Shemyakov, Z. A. Samoilenko, A. D. Loiko, and V. I. Kamenev, Inorg. Mater. 35(12), 1294 (1999).

    Google Scholar 

  16. V. P. D’yakonov, V. P. Pashchenko, E. E. Zubov, V. I. Mikhalov, Yu. Bukhantsev, I. M. Fita, V. A. Turchenko, N. A. Doroshenko, A. Szevczik, R. Zuberek, and G. Szymczak, Phys. Solid State 45(5), 914 (2003).

    Article  ADS  Google Scholar 

  17. G. Dezanneau, M. Audier, H. Vincent, C. Meneghini, and E. Djurado, Phys. Rev. B: Condens. Matter 69, 014412 (2004).

    Article  ADS  Google Scholar 

  18. A. V. Pashchenko, V. P. Pashchenko, Yu. F. Revenko, V. K. Prokopenko, A. A. Shemyakov, V. A. Turchenko, V. Ya. Sycheva, B. M. Ehfros, V. P. Komarov, and L. G. Gusakova, Metallofiz. Noveishie Tekhnol. 32, 487 (2010).

    Google Scholar 

  19. M. M. Savosta and P. Novák, Phys. Rev. Lett. 87, 137204 (2001).

    Article  ADS  Google Scholar 

  20. Y. Kawasaki, T. Minami, Y. Kishimoto, T. Ohno, K. Zenmyo, H. Kubo, T. Nakajima, and Y. Ueda, Phys. Rev. Lett. 96, 037202 (2006).

    Article  ADS  Google Scholar 

  21. R. D. Shannon, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 32, 751 (1976).

    Article  ADS  Google Scholar 

  22. R. I. Dass and J. B. Goodenough, Phys. Rev. B: Condens. Matter 67, 014401 (2003).

    Article  ADS  Google Scholar 

  23. P. Laiho, K. G. Lisunov, E. Lähderanta, P. A. Petrenko, J. Salminen, V. N. Stamov, Yu. P. Stepanov, and V. S. Zakhvalinskii, J. Phys. Chem. Solids 64, 2313 (2003).

    Article  ADS  Google Scholar 

  24. V. P. Pashchenko, A. A. Shemyakov, M. M. Savosta, S. I. Khartsev, V. N. Derkachenko, V. K. Prokopenko, V. A. Turchenko, A. V. Pashchenko, V. P. Dyakonov, Yu. Buhanzev, and H. Szymczak, Low Temp. Phys. 29(11), 910 (2003).

    Article  ADS  Google Scholar 

  25. Z. A. Samoilenko, V. P. Pashchenko, O. P. Cherenkov, and V. K. Prokopenko, Tech. Phys. 47(3), 368 (2002).

    Article  Google Scholar 

  26. D. Abou-Ras, W. Boujelben, A. Cheikh-Rouhou, J. Pierre, J.-P. Renard, L. Reversat, and K. Shimizu, J. Magn. Magn. Mater. 233, 147 (2001).

    Article  ADS  Google Scholar 

  27. M. P. de Jong, I. Bergenti, W. Osikowicz, R. Friedlein, V. A. Dediu, C. Taliani, and W. R. Salaneck, Phys. Rev. B: Condens. Matter 73, 052403 (2006).

    Article  ADS  Google Scholar 

  28. M. Viret, L. Ranno, and J. M. D. Coey, Phys. Rev. B: Condens. Matter 55, 8067 (1997).

    Article  ADS  Google Scholar 

  29. N. F. Mott, Adv. Phys. 50, 865 (2001).

    Article  ADS  Google Scholar 

  30. S. V. Trukhanov, I. O. Troyanchuk, M. Hervieu, H. Szymczak, and K. Bäarner, Phys. Rev. B: Condens. Matter 66, 184424 (2002).

    Article  ADS  Google Scholar 

  31. S. V. Trukhanov, JETP 100(1), 95 (2005).

    Article  MathSciNet  ADS  Google Scholar 

  32. S. V. Trukhanov, A. V. Trukhanov, A. N. Vasiliev, A. M. Balagurov, and H. Szymczak, JETP 113(5), 819 (2011).

    Article  ADS  Google Scholar 

  33. S. V. Trukhanov, JETP 101(3), 513 (2005).

    Article  ADS  Google Scholar 

  34. S. V. Trukhanov, A. V. Trukhanov, C. E. Botez, A. H. Adair, H. Szymczak, and R. Szymczak, J. Phys.: Condens. Matter. 19, 266214 (2007).

    Article  ADS  Google Scholar 

  35. W. H. Meiklejohn and C. P. Bean, Phys. Rev. 102, 1413 (1956).

    Article  ADS  Google Scholar 

  36. K. P. Belov, Phys.—Usp. 42(7), 711 (1999).

    Article  ADS  Google Scholar 

  37. V. T. Dovgii, A. I. Linnik, V. P. Pashchenko, V. N. Derkachenko, V. K. Prokopenko, V. A. Turchenko, N. V. Davydeiko, V. Ya. Sycheva, V. P. Dyakonov, A. V. Klimov, and H. Szymczak, Low Temp. Phys. 29(4), 285 (2003).

    Article  ADS  Google Scholar 

  38. A. V. Pashchenko, V. P. Pashchenko, A. A. Shemyakov, N. G. Kisel’, V. K. Prokopenko, Yu. F. Revenko, A. G. Sil’cheva, V. P. Dyakonov, and H. Szymczak, Phys. Solid State 50(7), 1308 (2008).

    Article  ADS  Google Scholar 

  39. S. V. Trukhanov, I. O. Troyanchuk, and N. V. Pushkarev, and H. Szymczak, JETP 95(2), 308 (2002).

    Article  ADS  Google Scholar 

  40. B. C. Zhao, W. H. Song, Y. Q. Ma, R. Ang, S. B. Zhang, and Y. P. Sun, Phys. Rev. B: Condens. Matter 72, 132401 (2005).

    Article  ADS  Google Scholar 

  41. R. I. Zainullina, N. G. Bebenin, V. V. Mashkautsan, A. M. Burkhanov, V. S. Gaviko, V. V. Ustinov, Ya.M. Mukovskii, D. A. Shulyatev, and V. G. Vasil’ev, JETP 93(1), 121 (2001).

    Article  ADS  Google Scholar 

  42. S. S. Kucherenko, V. P. Pashchenko, P. I. Polyakov, S. I. Khartsev, and V. A. Shtaba, Tech. Phys. Lett. 27(6), 451 (2001).

    Article  ADS  Google Scholar 

  43. V. P. Paschenko, A. A. Shemyakov, A. V. Pashechenko, L. T. Tsymbal, G. K. Kakazei, V. P. Dyakonov, H. Szymczak, J. A. M. Santos, and J. B. Sousa, Low Temp. Phys. 30(4), 299 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Pashchenko.

Additional information

Original Russian Text © V.P. Pashchenko, A.V. Pashchenko, V.K. Prokopenko, Yu.F. Revenko, V.V. Burkhovetskii, A.A. Shemyakov, A.G. Sil’cheva, G.G. Levchenko, 2012, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2012, Vol. 141, No. 3, pp. 572–581.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pashchenko, V.P., Pashchenko, A.V., Prokopenko, V.K. et al. Structural and magnetic heterogeneities, phase transitions, and magnetoresistance and magnetoresonance properties of the composition ceramic La0.7Pb0.3 − x Sn x MnO3 . J. Exp. Theor. Phys. 114, 503–511 (2012). https://doi.org/10.1134/S1063776112030193

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776112030193

Keywords

Navigation