Skip to main content
Log in

Theory of the Lamb shift in muonic helium ions

  • Nuclei, Particles, Fields, Gravitation, and Astrophysics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The Lamb shift (2P 1/2-2S 1/2) in muonic helium ions (μ 32 )+, (μ2/4He)+ is calculated taking into account the contributions of the order of α3, α4, α5, and α6. Special attention is paid to corrections for the polarization of the vacuum, as well as the structure and recoil of the nucleus. Numerical values 1259.8583 meV ((μ 32 He)+) and 1379.1107 meV ((μ 42 He)+) obtained for the shifts can be considered reliable estimates when compared to the experimental data of the CREMA collaboration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. J. Mohr, B. N. Taylor, and D. B. Newell, Rev. Mod. Phys. 84, 1533 (2012).

    Article  ADS  Google Scholar 

  2. S. G. Karshenboim, Phys.—Usp. 56(9), 883 (2013); S. G. Karshenboim, Ann. Phys. (Weinheim) 525, 472 (2013).

    Article  ADS  Google Scholar 

  3. R. Pohl, A. Antognini, F. Nez, F. D. Amaro, F. Biraben, J. M. R. Cardoso, D. S. Covita, A. Dax, S. Dhawan, L. M. P. Fernandes, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. Knowles, E.-O. Le Bigot, Y.-W. Liu, J. A. M. Lopes, L. Ludhova, C. M. B. Monteiro, F. Mulhauser, T. Nebel, P. Rabinowitz, J. M. F. dos Santos, L. A. Schaller, K. Schuhmann, C. Schwob, D. Taqqu, J. F. C. A. Veloso, and F. Kottmann, Nature (London) 466, 213 (2010); A. Antognini, F. Biraben, J. M. R. Cardoso, D. S. Covita, A. Dax, L. M. P. Fernandes, A. L. Gouvea, T. Graf, T. W. Hänsch, M. Hildebrandt, P. Indelicato, L. Julien, K. Kirch, F. Kottmann, Y.-W. Liu, C. M. B. Monteiro, F. Mulhauser, T. Nebel, F. Nez, J. M. F. Dos Santos, K. Schuhmann, D. Taqqu, J. F. C. A. Veloso, A. Voss, and R. Pohl, Can. J. Phys. 89, 47 (2011); A. Antognini, He 4 2 F. Nez, K. Schuhmann, F. D. Amaro, F. Biraben, J. M. R. Cardoso, D. S. Covita, A. Dax, S. Dhawan, M. Diepold, L. M. P. Fernandes, A. Giesen, A. L. Gouvea, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. Knowles, F. Kottmann, E.-O. Le Bigot, Y.-W. Liu, J. A. M. Lopes, L. Ludhova, C. M. B. Monteiro, F. Mulhauser, T. Nebel, P. Rabinowitz, J. M. F. dos Santos, L. A. Schaller, C. Schwob, D. Taqqu, J. F. C. A. Veloso, J. Vogelsang, and R. Pohl, Science (Washington) 339, 417 (2013); R. Pohl, R. Gilman, G. A. Miller, and K. Pachucki, Annu. Rev. Nucl. Part. Sci. 63, 175 (2013).

    Article  ADS  Google Scholar 

  4. T. Nebel, F. D. Amaro, A. Antognini, F. Biraben, J. M. R. Cardoso, D. S. Covita, A. Dax, L. M. P. Fernandes, A. L. Gouvea, T. Graf, T. W. Hänsch, M. Hildebrandt, P. Indelicato, L. Julien, K. Kirch, F. Kottmann, Y.-W. Liu, C. M. B. Monteiro, F. Nez, J. M. F. dos Santos, K. Schuhmann, D. Taqqu, J. F. C. A. Veloso, A. Voss, and R. Pohl, Hyperfine Interact. 212, 195 (2012); A. Antognini, F. Kottmann, F. Biraben, P. Indelicato, F. Nez, and R. Pohl, Ann. Phys. 331, 127 (2013).

    Article  ADS  Google Scholar 

  5. M. I. Eides, H. Grotch, and V. A. Shelyuto, Phys. Rep. 342, 62 (2001); M. I. Eides, H. Grotch, and V. A. Shelyuto, Theory of Light Hydrogenic Bound States (Springer-Verlag, Berlin, 2007).

    Article  Google Scholar 

  6. E. Borie, Z. Phys. A: At. Nucl. 275, 347 (1975); E. Borie and G. A. Rinker, Phys. Rev. A: At., Mol., Opt. Phys. 18, 324 (1978); E. Borie and G. A. Rinker, Rev. Mod. Phys. 54, 67 (1982).

    Article  ADS  Google Scholar 

  7. E. Borie, Phys. Rev. A: At., Mol., Opt. Phys. 72, 052511 (2005); E. Borie, Phys. Rev. A: At., Mol., Opt. Phys. 71, 032508 (2005); E. Borie, Ann. Phys. (New York) 327, 733 (2012).

    Article  ADS  Google Scholar 

  8. K. Pachucki, Phys. Rev. A: At., Mol., Opt. Phys. 54, 1994 (1996); K. Pachucki, Phys. Rev. A: At., Mol., Opt. Phys. 60, 3593 (1999); K. Pachucki, Phys. Rev. Lett. 106, 193007 (2011); A. Veitia and K. Pachucki, Phys. Rev. A: At., Mol., Opt. Phys. 69, 042501 (2004).

    Article  ADS  Google Scholar 

  9. I. B. Khriplovich and A. I. Milstein, J. Exp. Theor. Phys. 98, 181 (2004); A. I. Milstein, I. B. Khriplovich, and S. S. Petrosyan, J. Exp. Theor. Phys. 82, 616 (1996).

    Article  ADS  Google Scholar 

  10. C. E. Carlson, V. Nazaryan, and K. Griffioen, Phys. Rev. A: At., Mol., Opt. Phys. 83, 042509 (2011); C. E. Carlson, V. Nazaryan, and K. Griffioen, Phys. Rev. A: At., Mol., Opt. Phys. 78, 022517 (2008); C. E. Carlson and M. Vanderhaeghen, Phys. Rev. A: At., Mol., Opt. Phys. 84, 020102(R) (2011); C. E. Carlson, M. Gorchtein, and M. Vanderhaeghen, Phys. Rev. A: At., Mol., Opt. Phys. 89, 022504 (2014).

    Article  ADS  Google Scholar 

  11. J. L. Friar, Ann. Phys. 122, 151 (1979); J. L. Friar, J. Martorell, and D. W. L. Sprung, Phys. Rev. A: At., Mol., Opt. Phys. 56, 4579 (1997); J. L. Friar and G. L. Payne, Phys. Lett. B 618, 68 (2005); J. L. Friar, Phys. Rev. C: Nucl. Phys. 88, 034003 (2013).

    Article  ADS  Google Scholar 

  12. U. D. Jentschura, Ann. Phys. 326, 500 (2011); U. D. Jentschura, Phys. Rev. A: At., Mol., Opt. Phys. 84, 012505 (2011); U. D. Jentschura, Eur. Phys. J. D 61, 7 (2011).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. P. Indelicato, Phys. Rev. A: At., Mol., Opt. Phys. 87, 022501 (2013).

    Article  ADS  Google Scholar 

  14. A. P. Martynenko and R. N. Faustov, J. Exp. Theor. Phys. 88(4), 672 (1999); A. P. Martynenko and R. N. Faustov, J. Exp. Theor. Phys. 98 (1), 39 (2004); R. N. Faustov and A. P. Martynenko, Phys. Rev. A: At., Mol., Opt. Phys. 67, 052506 (2003); R. N. Faustov and A. P. Martynenko, Phys. At. Nucl. 67, 457 (2004); A. P. Martynenko, J. Exp. Theor. Phys. 106 (4), 690 (2008); A. P. Martynenko, J. Exp. Theor. Phys. 101 (6), 1021 (2005).

    Article  ADS  Google Scholar 

  15. G. W. F. Drake and L. L. Byer, Phys. Rev. A: At., Mol., Opt. Phys. 32, 713 (1985); A. H. Gomes, V. A. Kostelecky, and A. J. Vargas, arXiv:1407:7748 [hep-ph].

    Article  ADS  Google Scholar 

  16. D. Nevado and A. Pineda, Phys. Rev. C: Nucl. Phys. 77, 035202 (2008); A. Pineda, Phys. Rev. C: Nucl. Phys. 67, 025201 (2003); A. Pineda, Phys. Rev. C: Nucl. Phys. 71, 065205 (2005).

    Article  ADS  Google Scholar 

  17. E. Yu. Korzinin, V. G. Ivanov, and S. G. Karshenboim, Phys. Rev. D: Part., Fields, Gravitation, Cosmol. 88, 125019 (2013); S. G. Karshenboim, V. G. Ivanov, E. Yu. Korzinin, and V. A. Shelyuto, Phys. Rev. A: At., Mol., Opt. Phys. 81, 060501 (2010); S. G. Karshenboim, E. Yu. Korzinin, and V. G. Ivanov, JETP Lett. 88 (10), 641 (2008).

    Article  Google Scholar 

  18. A. P. Martynenko, Phys. Rev. A: At., Mol., Opt. Phys. 76, 012505 (2007).

    Article  ADS  Google Scholar 

  19. A. P. Martynenko, Phys. Rev. A: At., Mol., Opt. Phys. 71, 022506 (2005); A. P. Martynenko, Phys. At. Nucl. 69, 1309 (2006); A. P. Martynenko, Phys. At. Nucl. 71, 125 (2008); A. A. Krutov and A. P. Martynenko, Phys. Rev. A: At., Mol., Opt. Phys. 84, 052514 (2011); A. P. Martynenko, and E. N. Elekina, Phys. At. Nucl. 73 (12), 2074 (2010); A. P. Martynenko, A. A. Krutov, and R. N. Shamsutdinov, Phys. At. Nucl. 77, 786 (2014).

    Article  ADS  Google Scholar 

  20. R. N. Faustov, A. P. Martynenko, G. A. Martynenko, and V. V. Sorokin, Phys. Lett. B 733, 354 (2014); R. N. Faustov, A. P. Martynenko, G. A. Martynenko, and V. V. Sorokin, Phys. Rev. A: At., Mol., Opt. Phys. 90, 012520 (2014).

    Article  ADS  Google Scholar 

  21. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 4: V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, Quantum Electrodynamics (Fizmatlit, Moscow, 2006; Butterworth-Heinemann, Oxford, 2007).

  22. K. Pachucki and S. G. Karshenboim, J. Phys. B: At., Mol. Opt. Phys. 28, L221 (1995).

    Article  ADS  Google Scholar 

  23. T. Kinoshita and M. Nio, Phys. Rev. Lett. 62, 3240 (1999); T. Kinoshita and M. Nio, Phys. Rev. D: Part. Fields 60, 053008 (1999).

    Article  ADS  Google Scholar 

  24. S. G. Karshenboim, V. G. Ivanov, E. Yu. Korzinin, and V. A. Shelyuto, JETP Lett. 92(1), 8 (2010).

    Article  ADS  Google Scholar 

  25. E. H. Wichmann and N. M. Kroll, Phys. Rev. 101, 843 (1956).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. P. J. Mohr, G. Plunien, and G. Soff, Phys. Rep. 293, 228 (1998).

    Article  ADS  Google Scholar 

  27. S. A. Zapryagaev, N. L. Manakov, and V. G. Pal’chikov, The Theory of Multiply Charged Ions with One and Two Electrons (Energoatomizdat, Moscow, 1985) [in Russian].

    Google Scholar 

  28. H. F. Hameka, J. Chem. Phys. 47, 2728 (1967).

    Article  ADS  Google Scholar 

  29. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory (Butterworth-Heinemann, Oxford, 2005; Fizmatlit, Moscow, 2008).

    Google Scholar 

  30. I. Sick, Phys. Lett. B 116, 212 (1982); D. C. Morton, Q. Wu, and G. W. F. Drake, Phys. Rev. C: Nucl. Phys. 73, 034502 (2006).

    Article  ADS  Google Scholar 

  31. J. R. Sapirstein and D. R. Yennie, in Quantum Electrodynamics, Ed. by T. Kinoshita (World Scientific, Singapore, 1990), p. 560.

  32. M. I. Eides and H. Grotch, Phys. Rev. A: At., Mol., Opt. Phys. 55, 3351 (1995); M. I. Eides and H. Grotch, Phys. Rev. A: At., Mol., Opt. Phys. 56, R2507 (1997).

    Article  ADS  Google Scholar 

  33. G. P. Lepage, D. R. Yennie, and G. W. Erickson, Phys. Rev. Lett. 47, 1640 (1981).

    Article  ADS  Google Scholar 

  34. R. Barbieri, M. Caffo, and E. Remiddi, Nuovo Cimento Lett. 7, 60 (1973).

    Article  Google Scholar 

  35. E. Borie, Z. Phys. A: At. Nucl. 302, 187 (1981).

    Article  ADS  Google Scholar 

  36. J. L. Friar, J. Martorell, and D. W. L. Sprung, Phys. Rev. A: At., Mol., Opt. Phys. 59, 4061 (1999).

    Article  ADS  Google Scholar 

  37. R. N. Faustov and A. P. Martynenko, Eur. Phys. J. C 6, 1 (1999); A. P. Martynenko and R. N. Faustov, Phys. At. Nucl. 64 (7), 1282 (2001).

    Article  Google Scholar 

  38. J. Bernabeu and C. Jarlskog, Nucl. Phys. B 75, 59 (1974); G. A. Rinker, Phys. Rev. A: At., Mol., Opt. Phys. 14, 18 (1976).

    Article  ADS  Google Scholar 

  39. C. Ji, N. N. Dinur, S. Bacca, and N. Barnea, Phys. Rev. Lett. 111, 143402 (2013).

    Article  ADS  Google Scholar 

  40. U. D. Jentschura and B. J. Wundt, Eur. Phys. J. D 65, 357 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Martynenko.

Additional information

Original Russian Text © A.A. Krutov, A.P. Martynenko, G.A. Martynenko, R.N. Faustov, 2015, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2015, Vol. 147, No. 1, pp. 85–104.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krutov, A.A., Martynenko, A.P., Martynenko, G.A. et al. Theory of the Lamb shift in muonic helium ions. J. Exp. Theor. Phys. 120, 73–90 (2015). https://doi.org/10.1134/S1063776115010033

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776115010033

Keywords

Navigation