Skip to main content
Log in

Mechanisms of Resonant Power Input into a Magnetoactive RF Discharge Plasma

  • STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We consider the excitation and absorption of waves in a magnetoactive rf discharge plasma in the conditions when the generator frequency is lower than the electron cyclotron frequency. We consider the cases of unconfined and confined plasmas in the cylindrical geometry and different regimes of excitation of plasma waves with different dispersion relations and field polarizations. The power input to the plasma depends on the distribution of external-source currents initiating the discharge and on the density parameter characterizing the plasma density and transverse sizes of the system. In the case of a plasma cylinder with a free surface or a plasma cylinder in a large conducting casing, which is most interesting for applications, plasma contains only potential and nonpotential E-type oblique Langmuir waves as well as a strongly nonpotential surface wave. The latter wave is practically not excited by external currents flowing over the cylinder surface for real parameters of the system. For high values of the density parameter, the effective resistance of the plasma with inducting excitation of the discharge is predominant. For moderate and low values of this parameter, capacitive excitation of the wave by the current on the plasma cylinder surface is found to be most effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

Notes

  1. The effective resistivity of the plasma defined in this way coincides with real part of the specific complex impedance of a plasma discharge, which has been calculated in [31].

REFERENCES

  1. S. Shinohara, Adv. Phys. X 3, 1420424 (2018). https://doi.org/10.1080/23746149.2017.1420424

    Article  Google Scholar 

  2. S. Isayama, S. Shinohara, and T. Hada, Plasma Fusion Res. 13, 1101014 (2018). https://doi.org/10.1585/pfr.13.1101014

    Article  ADS  Google Scholar 

  3. F. F. Chen, Plasma Sources Sci. Technol. 24, 014001 (2015). https://doi.org/10.1088/0963-0252/24/1/014001

    Article  ADS  Google Scholar 

  4. E. A. Kral’kina, Phys. Usp. 51, 493 (2008). https://doi.org/10.1070/PU2008v051n05ABEH006422

    Article  ADS  Google Scholar 

  5. S. Samukawa et al., J. Phys. D: Appl. Phys. 45, 253001 (2012). https://doi.org/10.1088/0022-3727/45/25/253001

    Article  ADS  Google Scholar 

  6. S. Shinohara et al., IEEE Trans. Plasma Sci. 42, 1245 (2014).

    Article  ADS  Google Scholar 

  7. F. F. Chen, Phys. Plasmas 21, 093511 (2014). https://doi.org/10.1063/1.4896238

    Article  ADS  Google Scholar 

  8. F. F. Chen, IEEE Trans. Plasma Sci. 43, 195 (2015).

    Article  ADS  Google Scholar 

  9. S. Shinohara et al., IEEE Trans. Plasma Sci. 46, 252 (2018).

    Article  ADS  Google Scholar 

  10. V. L. Vdovin, Plasma Phys. Rep. 39, 95 (2013). https://doi.org/10.1134/S1063780X13020037

    Article  ADS  Google Scholar 

  11. C. Lau et al., Nucl. Fusion 58, 066004 (2018). https://doi.org/10.1088/1741-4326/aab96d

    Article  ADS  Google Scholar 

  12. R. W. Boswell, Phys. Lett. A 33, 457 (1970). https://doi.org/10.1016/0375-9601(70)90606-7

    Article  ADS  Google Scholar 

  13. R. W. Boswell, Plasma Phys. Control. Fusion 26, 1147 (1984).

    Article  ADS  Google Scholar 

  14. R. W. Boswell, Austral. J. Phys. 25, 403 (1972). https://doi.org/10.1071/PH720403

    Article  ADS  Google Scholar 

  15. R. W. Boswell, J. Plasma Phys. 31, 197 (1984). https://doi.org/10.1017/S0022377800001550

    Article  ADS  Google Scholar 

  16. F. F. Chen, Plasma Phys. Control. Fusion 33, 339 (1991). https://doi.org/10.1088/0741-3335/33/4/006

    Article  ADS  Google Scholar 

  17. K. P. Shamrai and V. B. Taranov, Plasma Phys. Control. Fusion 36, 1719 (1994).

    Article  ADS  Google Scholar 

  18. D. Arnush, Phys. Plasmas 7, 3042 (2000). https://doi.org/10.1063/1.874157

    Article  ADS  Google Scholar 

  19. E. A. Kralkina et al., AIP Adv. 8, 035217 (2018). https://doi.org/10.1063/1.5023631

    Article  ADS  Google Scholar 

  20. H. Tamura et al., IEEE Trans. Plasma Sci. 46, 3662 (2018).

    Article  ADS  Google Scholar 

  21. D. S. Stepanov, A. V. Chebotarev, and E. Y. Shkol’nikov, High Temp. 57, 316 (2019). https://doi.org/10.1134/S0018151X19030155

    Article  Google Scholar 

  22. I. N. Kartashov and M. V. Kuzelev, High Temp. 56, 334 (2018). https://doi.org/10.1134/S0018151X18030100

    Article  Google Scholar 

  23. I. N. Kartashov and M. V. Kuzelev, J. Exp. Theor. Phys. 129, 298 (2019). https://doi.org/10.1134/S106377611907015X

    Article  ADS  Google Scholar 

  24. I. S. Abramov, E. D. Gospodchikov, and A. G. Shala-shov, J. Exp. Theor. Phys. 129, 444 (2019). https://doi.org/10.1134/S106377611907001X

    Article  ADS  Google Scholar 

  25. E. A. Kralkina et al., Plasma Sources Sci. Technol. 26, 055006 (2017). https://doi.org/10.1088/1361-6595/aa61e6

    Article  ADS  Google Scholar 

  26. E. A. Kralkina et al., Plasma Sources Sci. Technol. 25, 015016 (2016). https://doi.org/10.1088/0963-0252/25/1/015016

    Article  ADS  Google Scholar 

  27. V. L. Ginzburg and A. A. Rukhadze, Waves in Magneto-Active Plasma (URSS, Moscow, 2013; Springer, New York, 1972).

  28. A. F. Alexandrov, L. S. Bogdankevich, and A. A. Ru-khadze, Principles of Plasma Electrodynamics (Springer, Heidelberg, 1984; Vyssh. Shkola, Moscow, 1988).

  29. M. V. Kuzelev, A. A. Rukhadze, and P. S. Strelkov, Plasma Relativistic Microwave Electronics (Lenand, Moscow, 2018) [in Russian].

    MATH  Google Scholar 

  30. M. V. Kuzelev and A. A. Rukhadze, Methods of Wave Theory in Dispersive Media (World Scientific, Singapore, 2010; Fizmatlit, Moscow, 2007).

  31. A. F. Aleksandrov, M. V. Kuzelev, and A. A. Rukhadze, Commun. Technol. Electron. 55, 773 (2010).

    Article  Google Scholar 

  32. K. P. Shamrai and V. B. Taranov, Plasma Sources Sci. Technol. 5, 474 (1996).

    Article  ADS  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research (project no. 19-08-00625).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. N. Kartashov or M. V. Kuzelev.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kartashov, I.N., Kuzelev, M.V. Mechanisms of Resonant Power Input into a Magnetoactive RF Discharge Plasma. J. Exp. Theor. Phys. 131, 645–663 (2020). https://doi.org/10.1134/S1063776120090162

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776120090162

Navigation