Skip to main content
Log in

Photonuclear data and modern physics of giant resonances

  • Nuclei
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The results of the development (“renaissance”) of giant-resonance physics are briefly discussed from the point of view of their application to creating a photonuclear database. It is indicated that part of the recommendations from corresponding libraries of data are not at the level of the present-day status of giant-resonance physics. A Lorentzian parametrization of the most reliable experimental data on isovector M1 resonances is constructed for seven spherical nuclei, and it is shown that the widths of M1 resonances are severalfold, sometimes an order of magnitude, smaller than the value of Γ0 = 4 MeV, which was recommended for all nuclei. The need for microscopically taking into account configurations more complex than those that are included within the standard random-phase approximation or within the quasiparticle random-phase approximation is emphasized. To be more precise, it is necessary to take into account coupling to phonons, since this changes the temperature dependence of the resonance width in relation to that which was used earlier and since, without this, one cannot explain the properties of pygmy dipole resonances in the region of the nucleon binding energy. Our calculations of the average energies of the pygmy dipole resonances in the Ca and Sn isotopes within the microscopic extended theory of finite Fermi systems reveal that the inclusion of coupling to phonons reduces these energies considerably toward the improvement of agreement with experimental data. The idea of creating a library of photonuclear data for unstable nuclei, including fission fragments, on the basis of the extended theory of finite Fermi systems is discussed in connection with the fact that information necessary for fitting the parameters of phenomenological theories is absent or insufficient for such nuclei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Hartmann, J. Enders, P. Mohr, et al., Phys. Rev. C 65, 034301 (2002).

  2. M. Igashira, H. Kitazawa, H. Shimizu, et al., Nucl. Phys. A 457, 301 (1986).

    ADS  Google Scholar 

  3. J. Kopecky and M. Uhl, Phys. Rev. C 41, 1941 (1990).

    Article  ADS  Google Scholar 

  4. Reference Input Parametrer Library (Chairman A. V. Ignatyuk), IAEA-Tedoc-1034 (1998).

  5. Reference Input Parameter Library (Chairman P. G. Young), http://www.nds.iaea.or.at/ RIPL-2 (2002).

  6. Electric and Magnetic Giant Resonances in Nuclei, Ed. by J. Speth (World Sci., Singapore, 1991).

    Google Scholar 

  7. M. Harakeh and A. Van der Woude, Giant Resonance (Clarendorn Press, Oxford, 2001).

    Google Scholar 

  8. S. P. Kamerdzhiev, Izv. Akad. Nauk, Ser. Fiz. 61, 152 (1997).

    Google Scholar 

  9. S. Kamerdzhiev, J. Speth, and G. Tertychny, Phys. Rep. 393, 1 (2004); S. P. Kamerdzhiev, G. Ya. Gertycnyĭ, and V. I. Tselyaev, Fiz. Élem. Chastits At. Yadra 28, 333 (1997) [Phys. Part. Nucl. 28, 134 (1997)].

    Article  Google Scholar 

  10. Giant Resonances GR2000, Proceedings of the 7th International Topical Conference on Giant Resonances Osaka, Japan, 2000, Ed. by M. Fujiwara et al., Nucl. Phys. A 687, 1 (2001).

  11. COMEX1, Proceedings of the International Conference on Collective Motion in Nuclei under Extreme Conditions, Paris, France, 2003, Ed. by N. Frascaria et al., Nucl. Phys. A 731, 3 (2004).

  12. I. N. Borzov, S. P. Kamerdzhiev, V. N. Tkachev, Yad. Fiz. 24, 715 (1976) [Sov. J. Nucl. Phys. 24, 373 (1976)]; Acta Phys. Pol. B 8, 415 (1977).

    Google Scholar 

  13. S. P. Kamerdzhiev, http://www.fz-juelich.de/ikp/publications/AR2003/CHAP4/401.pdf

  14. T. Hartmann, M. Babilon, S. Kamerdzhiev, et al., Phys. Rev. Lett. 93, 192501 (2004).

    Google Scholar 

  15. R. M. Laszewski and P. Axel, Phys. Rev. C 19, 342 (1979).

    Article  ADS  Google Scholar 

  16. S. N. Belyaev, O. V. Vasil’ev, V. V. Voronov, et al., Yad. Fiz. 55, 289 (1992) [Sov. J. Nucl. Phys. 55, 157 (1992)]; Fiz. Élem. Chastits A. Yadra 23, 1537 (1992) [Sov. J. Part. Nucl. 23, 667 (1992)].

    Google Scholar 

  17. V. G. Soloviev, Theory of Atomic Nuclei (Énergoatomizdal, Moscow, 1989; Taylor and Francis, 1992).

    Google Scholar 

  18. B. S. Dolbilkin, in Proceedings of the Fifth Course of International School for Intermediate Energy Nuclear, Verona, Italy, 1985, p. 208.

  19. M. A. Hofstee, S. Y. van den Werf, A. M. van den Berg, et al., Nucl. Phys. A 588, 729 (1995).

    ADS  Google Scholar 

  20. F. E. Bertrand, Nucl. Phys. A 354, 129c (1981).

    ADS  Google Scholar 

  21. A. Van der Woude, in Electric and Magnetic Giant Resonances in Nuclei, Ed. by J. Speth (World Sci., Singapore, 1991), p. 100.

    Google Scholar 

  22. A. Bohr and B. R. Mottelson, Nuclear Structure, Vol. 2: Nuclear Deformations (Benjamin, New York, 1975; Mir, Moscow, 1977).

    Google Scholar 

  23. W. V. Prestwich, M. A. Islam, and T. J. Kennett, Z. Phys. A 315, 103 (1984).

    Google Scholar 

  24. F. E. Bertrand, Annu. Rev. Nucl. Part. Sci. 26, 457 (1976).

    ADS  Google Scholar 

  25. A. V. Ignatyuk, Statistical Properties of Excited Nuclei (Énergoatomizdat, Moscow, 1983) [in Russian].

    Google Scholar 

  26. A. V. Ignatyuk, in Proceedings of the 5th School on Neutron Physics, Alushta, 1986, Preprint No. D86-747, 7, OIYAI (Joint Institute for Nuclear Research, Dubna, 1987).

    Google Scholar 

  27. S. G. Kadmenskiĭ, V. P. Markushev, and V. I. Furman, Yad. Fiz. 37, 277 (1983) [Sov. J. Nucl. Phys. 37, 165 (1983)].

    Google Scholar 

  28. V. P. Lunev, Yu. N. Shubin, C. Grandi, et al., Nuovo Cimento A 112, 743 (1999).

    ADS  Google Scholar 

  29. P. F. Bortignon, R. A. Broglia, G. F. Bertsch, and J. Pacheco, Nucl. Phys. A 460, 149 (1986).

    ADS  Google Scholar 

  30. P. Donati, P. F. Bortignon, and R. A. Broglia, Z. Phys. A 354, 249 (1996).

    Article  Google Scholar 

  31. P. Donati, N. Giovanardi, P. F. Bortignon, and R. A. Broglia, Phys. Lett. B 383, 15 (1996).

    ADS  Google Scholar 

  32. P. F. Bortignon, A. Bracco, and R. A. Broglia, Giant Resonances: Nuclear Structure at Finite Temperature (Harwood, Amsterdam, 1998).

    Google Scholar 

  33. V. K. Sirotkin, Yad. Fiz. 43, 570 (1986) [Sov. J. Nucl. Phys. 43, 362 (1986)].

    Google Scholar 

  34. Yu. P. Popov, Fiz. Élem. Chastits At. Yadra 13, 1165 (1982) [Sov. J. Part. Nucl. 13, 483 (1982)].

    Google Scholar 

  35. A. N. Storozhenko, A. I. Vdovin, A. Ventura, and A. I. Blokhin, Commun. JINR No. E4-2002-196 (Joint Institute for Nucler Research, Dubna, 2002).

    Google Scholar 

  36. G. F. Bertsch and R. A. Broglia, Oscillations in Finite Quantum Systems (Cambridge Univ. Press, Cambridge, 1996).

    Google Scholar 

  37. Y. Suzuki, K. Ikeda, and H. Sato, Prog. Theor. Phys. 83, 180 (1990).

    Article  ADS  Google Scholar 

  38. S. Goriely, Phys. Lett. B 436, 10 (1998).

    ADS  MathSciNet  Google Scholar 

  39. S. Goriely and E. Khan, Nucl. Phys. A 706, 217 (2002).

    ADS  Google Scholar 

  40. S. P. Kamerdzhiev and E. V. Litvinova, Yad. Fiz. 67, 180, 1632(E) (2004) [Phys. At. Nucl. 67, 183, 1610(E) (2004)].

    Google Scholar 

  41. S. Kamerdzhiev, J. Speth, and G. Tertychny, Nucl. Phys. A 624, 328 (1997).

    ADS  Google Scholar 

  42. J. Chambers, E. Zaremba, J. P. Adams, and B. Castel, Phys. Rev. C 50, R2671 (1994).

    Article  ADS  Google Scholar 

  43. S. F. Mughabghab and C. L. Dunford, Phys. Lett. B 487, 155 (2000).

    ADS  Google Scholar 

  44. J. Le Tourneux, K. Dan. Vidensk. Selsk. Mat. Fys. Medd. 34, 1 (1965).

    Google Scholar 

  45. V. I. Tselyaev, Izv. Akad. Nauk, Ser. Fiz. 64, 5441 (2000).

    Google Scholar 

  46. S. S. Dietrich and B. L. Berman, At. Data Nucl. Data Tables 38, 199 (1988).

    Article  ADS  Google Scholar 

  47. S. Raman, L. W. Fagg, and R. S. Hicks, in Electric and Magnetic Giant Resonances in Nuclei, Ed. by J. Speth (World Sci., Singapore, 1991), p. 356.

    Google Scholar 

  48. S. P. Kamerdzhiev, Yad. Fiz. 38, 316 (1983) [Sov. J. Nucl. Phys. 38, 188 (1983)].

    Google Scholar 

  49. S. P. Kamerdzhiev and V. N. Tkachev, Phys. Lett. B 142, 225 (1984); V. N. Tkachev and S. P. Kamerdzhiev, Yad. Fiz. 42, 832 (1985) [Sov. J. Nucl. Phys. 42, 527 (1985)].

    ADS  Google Scholar 

  50. D. Cha, B. Schwesinger, J. Wambach, and J. Speth, Nucl. Phys. A 430, 321 (1984).

    ADS  Google Scholar 

  51. S. Kamerdzhiev and V. Tkachev, Z. Phys. A 334, 19 (1989).

    Google Scholar 

  52. S. P. Kamerdzhiev and V. I. Tselyaev, Izv. Akad. Nauk SSSR, Ser. Fiz. 55, 491 (1991).

    Google Scholar 

  53. R. M. Laszewski, P. Rullhusen, S. D. Hoblit, and S. F. LeBrun, Phys. Rev. Lett. 54, 530 (1985).

    Article  ADS  Google Scholar 

  54. R. M. Laszewski, P. Rullhusen, S. D. Hoblit, and S. F. LeBrun, Phys. Rev. C 34, 2013 (1986).

    ADS  Google Scholar 

  55. R. M. Laszewski, R. Alarcon, and S. D. Hoblit, Phys. Rev. Lett. 59, 431 (1987).

    Article  ADS  Google Scholar 

  56. R. M. Laszewski, R. Alarcon, D. S. Dale, and S. D. Hoblit, Phys. Rev. Lett. 61, 1710 (1988).

    Article  ADS  Google Scholar 

  57. R. Alarcon, R. M. Laszewski, and D. S. Dale, Phys. Rev. C 40, R1097 (1989).

    Article  ADS  Google Scholar 

  58. D. I. Sober, B. C. Metsch, W. Knüpfer, et al., Phys. Rev. C 31, 2054 (1985).

    Article  ADS  Google Scholar 

  59. A. B. Migdal, Theory of Finite Fermi Systems and Applications to Atomic Nuclei (Nauka, Moscow, 1965; Interscience, New York, 1965).

    Google Scholar 

  60. S. P. Kamerdzhiev, J. Speth, G. Tertychny, and J. Wambach, Z. Phys. A 336, 253 (1990).

    Google Scholar 

  61. I. N. Borzov and V. N. Tkachev, Izv. Akad. Nauk SSSR, Ser. Fiz. 41, 1263 (1977).

    Google Scholar 

  62. T. S. Belanova, A. I. Blokhin, A. V. Ignatyuk, et al., Low Energy Neutron Physics A (Springer, 2001), Part 2.

  63. M. S. Smith, Nucl. Phys. A 718, 339c (2003).

    ADS  Google Scholar 

  64. Nuclei in the Cosmos VII, Proceedings of the 7th International Symposium on Nuclei in the Cosmos (NIC7), Japan, 2002, Ed. by S. Kubono et al., Nucl. Phys. A 718, 3 (2003).

  65. G. Colo, N. Van Gial, P. F. Bortignon, and R. A. Broglia, Phys. Rev. C 50, 1496 (1994).

    ADS  Google Scholar 

  66. S. Drozdz, S. Nishizaki, J. Speth, and J. Wambach, Phys. Rep. 197, 1 (1990).

    Article  ADS  Google Scholar 

  67. J. Sawicki, Phys. Rev. 126, 2231 (1962).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  68. S. Adachi and L. Lipparini, Nucl. Phys. A 489, 445 (1988).

    ADS  Google Scholar 

  69. S. P. Kamerdzhiev, Preprint FÉI-1860 (Institute of Physics and Power Engineering, Obninsk, 1987).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © S.P. Kamerdzhiev, S.F. Kovalev, 2006, published in Yadernaya Fizika, 2006, Vol. 69, No. 3, pp. 442–455.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamerdzhiev, S.P., Kovalev, S.F. Photonuclear data and modern physics of giant resonances. Phys. Atom. Nuclei 69, 418–432 (2006). https://doi.org/10.1134/S1063778806030057

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778806030057

PACS numbers

Navigation