Skip to main content
Log in

Procedural analysis of a new method for determining the Gibbs energy and experimental data on thermodynamic properties of liquid-metal coolants based on alkali metal alloys

  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

A detailed procedural analysis is given and results of implementation of the new version of the effusion method for determining the Gibbs energy (thermodynamic activity) of binary and ternary systems of alkali metals Cs-Na, K-Na, Cs-K, and Cs-K-Na are presented. The activity is determined using partial pressures of the components measured according the effusion method by the intensity of their atomic beams. The pressure range used in the experiment is intermediate between the Knudsen and hydrodynamic effusion modes. A generalized version of the effusion method involves the pressure range beyond the limits of the applicability of the Hertz-Knudsen equation. Employment of this method provides the differential equation of chemical thermodynamics; solution of this equation makes it possible to construct the Gibbs energy in the range of temperatures 400 ≤ T ≤ 1200 K and concentrations 0 ≤ x i ≤ 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. I. Bystrov, D. N. Kagan, G. A. Krechetova, and E. E. Shpilrain, Liquid-Metal Coolants for Heat Pipes and Power Plants (Hemisphere, New York, 1990).

    Google Scholar 

  2. D. N. Kagan, G. A. Krechetova, and E. E. Shpilrain, Teplofiz. Vys. Temp. 42 401 (2004).

    Google Scholar 

  3. L. P. Sidorov, M. V. Korobov, and A. V. Zhuravleva, Mass-Spectral Thermodynamic Investigations (Mosc. Gos. Univ., Moscow, 1985) [in Russian].

    Google Scholar 

  4. D. V. Sivukhin, Thermodynamics and Molecular Physics (Nauka, Moscow, 2005) [in Russian].

    Google Scholar 

  5. C. T. Ewing and K. H. Stern, J. Phys. Chem. 78, 1198 (1974).

    Article  Google Scholar 

  6. C. T. Ewing and K. H. Stern, J. Phys. Chem. 79, 2007 (1975).

    Article  Google Scholar 

  7. D. N. Kagan, G. A. Krechetova, and E. E. Shpilrain, Teplofiz. Vys. Temp. 39, 904 (2001) [High Temp. 39,840 (2001)].

    Google Scholar 

  8. O. D. Zakharova and A. M. Semenov, Teplofiz. Vys. Temp. 40, 150 (2002) [High Temp. 40, 139 (2002)].

    Google Scholar 

  9. K. Ichikawa, S. M. Granstaff, and J. C. Thompson, J. Chem. Phys. 61, 4059 (1974).

    Article  ADS  Google Scholar 

  10. F. E. Neale and N. E. Cusack, J. Phys. F: Metal Phys. 12, 2839 (1982).

    Article  ADS  Google Scholar 

  11. F. E. Neale and N. E. Cusack, J. Non-Crystalline Solids 61–62, 169 (1984).

    Article  Google Scholar 

  12. F. A. Cafasso, V. M. Khanna, and H. M. Feder, Adv. Phys. 16, 535 (1967).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. N. Kagan.

Additional information

Original Russian Text © D.N. Kagan, G.A. Krechetova, É.É. Shpil’rain, 2008, published in Voprosy Atomnoi Nauki i Tekhniki. Seriya: Fizika Yadernykh Reaktorov, 2008, No. 4, pp. 64–71.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kagan, D.N., Krechetova, G.A. & Shpil’rain, É.É. Procedural analysis of a new method for determining the Gibbs energy and experimental data on thermodynamic properties of liquid-metal coolants based on alkali metal alloys. Phys. Atom. Nuclei 73, 2232–2239 (2010). https://doi.org/10.1134/S1063778810130090

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778810130090

Keywords

Navigation