Skip to main content
Log in

Role of dynamical effects in the formation of T-Odd asymmetries for products of polarized-neutron-induced ternary fission of nuclei

  • Nuclei
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

Basic dynamical effects that accompany the cold-polarized-neutron-induced binary and ternary fission of actinide nuclei and which determine the properties of T -odd asymmetries in angular distributions of various prescission and evaporated light third particles emitted in true and delayed ternary fission are analyzed on the basis of quantum-mechanical fission theory. It is emphasized that effects associated with the conservation of axial symmetry of the fissioning system under study at all stages of its evolution from the formation of neutron resonance states of the fissile compound nucleus to the separation of its fission fragments, including the appearance of zero wriggling vibrations of the cold compound nucleus in the vicinity of its scission point, are of particular importance, the influence of quantum collective rotation of the polarized fissile system on the asymmetry of the angular distribution of both fission fragments and third particles being taken into account. It is shown that the difference in the behavior of the coefficients characterizing the T -odd asymmetries under analysis for the target nuclei being studied can be explained, upon taking into account the interference between the fission amplitudes for the neutron resonance states of fissile compound nuclei, by the difference in the contributions of even and odd components of the amplitudes of angular distributions of third particles to the coefficients in question.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Jesinger, A. Kötzle, A. M. Gagarski, et al., Nucl. Instrum. Methods A 440, 618 (2000).

    Article  ADS  Google Scholar 

  2. P. Jesinger, A. Köetzle, F. Gönnenwein, et al., Phys. At. Nucl. 65, 630 (2002).

    Article  Google Scholar 

  3. A. M. Gagarski, I. S. Guseva, F. Gönnenwein, et al., in Proceedings of the 1SINN-14, Dubna, Russia, 2006 (JINR, Dubna, 2007), p. 93.

    Google Scholar 

  4. F. Gönnenwein et al., Phys. Lett. B 652, 13 (2007).

    Article  ADS  Google Scholar 

  5. A. M. Gagarski, G. A. Petrov, I. S. Guseva, et al., in Proceedings of the ISINN-16, Dubna, Russia, 2008 (JINR, Dubna, 2009), p. 356.

    Google Scholar 

  6. V. E. Bunakov and S. G. Kadmensky, Phys. At. Nucl. 66, 1846 (2003).

    Article  Google Scholar 

  7. M. Mutterer and J. P. Theobald, Nuclear Decay Modes (IOP Publ., Bristol, 1996), Ch. 12.

    Google Scholar 

  8. G. V. Danilyan et al., in Proceedings of the ISINN-16, Dubna, Russia, 2008 (JINR, Dubna, 2009), p. 350.

    Google Scholar 

  9. G. V. Danilyan et al., in Proceedings of the ISINN-17, Dubna, Russia, 2009 (JINR, Dubna, 2010), p. 23.

    Google Scholar 

  10. S. G. Kadmensky, Phys. At. Nucl. 65, 1390, 1785 (2002); 68, 1968 (2005).

    Article  MATH  Google Scholar 

  11. S. G. Kadmensky and L. V. Rodionova, Phys. Atom. Nucl. 66, 1219 (2004); Phys. At. Nucl. 68, 1421 (2005).

    Article  ADS  Google Scholar 

  12. S. G. Kadmensky and L. V. Titova, Phys. At. Nucl. 72, 1738 (2009).

    Article  Google Scholar 

  13. V. E. Bunakov, S. G. Kadmensky, and S. S. Kadmensky, Phys. At. Nucl. 71, 1887 (2008).

    Article  Google Scholar 

  14. S. G. Kadmensky, D. E. Lyubashevsky, and L. V. Titova, Bull. Russ. Acad. Sci.: Phys. 75, 989 (2011).

    Article  MATH  Google Scholar 

  15. D. E. Lyubashevsky and S. G. Kadmensky, Bull. Russ. Acad. Sci.: Phys. 74, 791 (2010).

    Article  Google Scholar 

  16. D. E. Lyubashevskii, S. G. Kadmensky, and V. E. Bunakov, Bull. Russ. Acad. Sci.: Phys. 75, 973 (2011).

    Article  Google Scholar 

  17. S. G. Kadmensky and S. S. Kadmensky, Bull. Russ. Acad. Sci.: Phys. 74, 786 (2010).

    Article  Google Scholar 

  18. S. G. Kadmensky, V. E. Bunakov, and S. S. Kadmensky, Bull. Russ. Acad. Sci.: Phys. 74, 517 (2010).

    Article  Google Scholar 

  19. S. G. Kadmensky, S. S. Kadmensky, and D. E. Lyubashevsky, Phys. At. Nucl. 73, 1436 (2010).

    Article  Google Scholar 

  20. S. G. Kadmensky and D. E. Lyubashevsky, Bull. Russ. Acad. Sci.: Phys. 76, 947 (2012).

    Article  Google Scholar 

  21. S. G. Kadmensky and D. E. Lyubashevsky, Phys. At. Nucl. 77, 46 (2014).

    Article  Google Scholar 

  22. O. Bohr and B. R. Mottelson, Nuclear Structure (Benjamin, New York, 1969, 1975; Mir, Moscow, 1971, 1977), Vols. 1, 2.

    Google Scholar 

  23. E. P. Wigner, Ann. Math. 62, 548 (1955); Ann. Math. 65, 203 (1957); Ann. Math. 67, 325 (1958).

    Article  MATH  MathSciNet  Google Scholar 

  24. S. G. Kadmenskiĭ, V. P. Markushev, and V. I. Furman, Sov. J. Nucl. Phys. 31, 607 (1980).

    Google Scholar 

  25. S. G. Kadmenskiĭ, V. P. Markushev, and V. I. Furman, Sov. J. Nucl. Phys. 35, 164 (1982).

    Google Scholar 

  26. S. G. Kadmenskiĭ et al., Sov. J. Nucl. Phys. 39, 4 (1984).

    Google Scholar 

  27. I. R. Nix, Nucl. Phys. 130, 241 (1969).

    Article  Google Scholar 

  28. M. Brack, Rev. Mod. Phys. 44, 320 (1972).

    Article  ADS  Google Scholar 

  29. W. Mollenkopf et al., J. Phys. G 18, L203 (1992).

    Article  ADS  Google Scholar 

  30. J. R. Nix and W. J. Swiatecki, Nucl. Phys. A 71, 1 (1965).

    Article  Google Scholar 

  31. O. P. Sushkov and V. V. Flambaum, Sov. Phys. Usp. 25, 1 (1982).

    Article  ADS  Google Scholar 

  32. P. Fong, Phys. Rev. C 3, 2025 (1971).

    Article  ADS  Google Scholar 

  33. C. F. Tsang, Phys. Scr. Suppl. A 10, 90 (1974).

    Article  ADS  Google Scholar 

  34. V. A. Rubchenya, Sov. J. Nucl. Phys. 35, 334 (1982).

    Google Scholar 

  35. N. Carjan, J. Phys. (Paris) 37, 1279 (1976).

    Article  Google Scholar 

  36. O. Tanimura and T. Fliessbach, Z. Phys. A 328, 475 (1987).

    ADS  Google Scholar 

  37. M. Ya. Barkovskii et al., Preprint No. 1540, LIYad. Fiz. (Leningr. Inst. Yad. Fiz. AN SSSR, Leningrad, 1989).

    Google Scholar 

  38. J. B. Wilhelmy et al., Phys. Rev. C 5, 2041 (1972).

    Article  ADS  Google Scholar 

  39. A. Gavron, Phys. Rev. C 13, 2562 (1976).

    Article  ADS  Google Scholar 

  40. I. S. Guseva et al., in Proceedings of the ISINN-18, Dubna, Russia, 2010 (JINR, Dubna, 2011), p. 84.

    Google Scholar 

  41. I. Guseva and Yu. Gusev, AIP Conf. Proc. 1175, 335 (2009).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Kadmensky.

Additional information

Original Russian Text © S.G. Kadmensky, V.E. Bunakov, L.V. Titova, 2015, published in Yadernaya Fizika, 2015, Vol. 78, No.s. 7–8, pp. 706–715.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadmensky, S.G., Bunakov, V.E. & Titova, L.V. Role of dynamical effects in the formation of T-Odd asymmetries for products of polarized-neutron-induced ternary fission of nuclei. Phys. Atom. Nuclei 78, 662–671 (2015). https://doi.org/10.1134/S1063778815050105

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778815050105

Keywords

Navigation