Skip to main content
Log in

Decisive role of wriggling vibrations in the formation of angular and spin distributions of products originating from binary and ternary fission of oriented nuclei

  • Proceedings of LXVI International Conference on Nuclear Spectroscopy and Atomic Nuclei Structure October 11–14, 2016, Sarov, Russia/Nuclei
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

It is shown that the multiplicities and angular and energy distributions of neutrons and photons evaporated from thermalized fragments originating from the spontaneous and low-energy induced fission of nuclei, the relative yields of ground and isomeric states of final fragments, and the features of delayed neutrons emitted upon the beta decay of the above fragments can successfully be described by employing nonequilibrium distributions of spins and relative orbital angular momenta of fission fragments formed in the vicinity of the scission point for the fissile nucleus being studied. It is also shown that these distributions, which are characterized by large mean values of the spins and orbital angular momenta directed orthogonally to the symmetry axis of the fissioning nucleus are successfully constructed upon simultaneously taking into account zero-mode transverse wriggling and bending vibrations of a fissile compound nucleus in the vicinity of its scission point, the wriggling vibrations being dominant. It is confirmed that the zero-mode wriggling vibrations considered immediately above are directly involved in the formation of the angular distributions of fragments originating from the spontaneous and low-energy fission of nuclei. This makes it possible to describe successfully such distributions for photofission fragments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Skarsvåg and K. Bergheim, Nucl. Phys. 45, 72 (1963).

    Article  Google Scholar 

  2. A. Gavron, Phys. Rev. C 13, 2562 (R) (1976).

    Article  ADS  Google Scholar 

  3. J. B. Wilhelmy et al., Phys. Rev. C 5, 2041 (1972).

    Article  ADS  Google Scholar 

  4. L. G. Moretto, G. F. Peaslee, and G. J. Wozniak, Nucl. Phys. A 502, 453 (1989).

    Article  ADS  Google Scholar 

  5. J. O. Rasmussen, W. Nörenberg, and H. J. Mang, Nucl. Phys. A 136, 465 (1969).

    Article  ADS  Google Scholar 

  6. T. M. Shneidman et al., Phys. Rev. C 65, 064302 (2002).

    Article  ADS  Google Scholar 

  7. S. G. Kadmensky, D. E. Lyubashevsky, and L. V. Titova, Bull. Russ. Acad. Sci.: Phys. 79, 879 (2015).

    Article  Google Scholar 

  8. V. E. Bunakov, S. G. Kadmensky, and D. E. Lyubashevsky, Phys. At. Nucl. 79, 304 (2016).

    Article  Google Scholar 

  9. J. R. Nix and W. J. Swiateski, Nucl. Phys. A 71, 1 (1965).

    Article  Google Scholar 

  10. A. Bohr and B. Mottelson, Nuclear Structure (Benjamin, New York, Amsterdam, 1969, 1975), Vols. 1, 2.

    MATH  Google Scholar 

  11. S. G. Kadmensky, Phys. At. Nucl. 65, 1390, 1785 (2002).

    Article  Google Scholar 

  12. S. G. Kadmensky, Bull. Russ. Acad. Sci.: Phys. 68, 1072 (2004).

    Google Scholar 

  13. S. G. Kadmensky and L. V. Rodionova, Phys. At. Nucl. 66, 1219 (2003).

    Article  Google Scholar 

  14. S. G. Kadmensky and L. V. Rodionova, Phys. At. Nucl. 68, 1421 (2005).

    Article  Google Scholar 

  15. M. Brack et al., Rev.Mod. Phys. 44, 320 (1972).

    Article  ADS  Google Scholar 

  16. S. G. Kadmensky, Phys. At. Nucl. 66, 1691 (2003).

    Article  Google Scholar 

  17. S. G. Kadmensky, Phys. At. Nucl. 67, 241 (2004).

    Article  Google Scholar 

  18. S. G. Kadmensky, Phys. At. Nucl. 68, 1968 (2005).

    Article  Google Scholar 

  19. O. Tanimura and T. Fliessbach, Z. Phys. A 328, 475 (1987).

    ADS  Google Scholar 

  20. P. Fong, Phys. Rev. C 3, 2025 (1971).

    Article  ADS  Google Scholar 

  21. C. F. Tsang, Phys. Scr. Suppl. A 10, 90 (1974).

    Article  ADS  Google Scholar 

  22. S. G. Kadmenskiĭ, V. P. Markushev, and V. I. Furman, Sov. J. Nucl. Phys. 31, 607 (1980).

    Google Scholar 

  23. S. G. Kadmenskiĭ, V. P. Markushev, and V. I. Furman, Sov. J. Nucl. Phys. 35, 166 (1982).

    Google Scholar 

  24. S. G. Kadmensky and L. V. Titova, Phys. At. Nucl. 72, 1738 (2009).

    Article  Google Scholar 

  25. V. E. Bunakov, S. G. Kadmensky, and S. S. Kadmensky, Phys. At. Nucl. 71, 1887 (2008).

    Article  Google Scholar 

  26. S. G. Kadmensky, V. E. Bunakov, and L. V. Titova, Phys. At. Nucl. 78, 662 (2015).

    Article  Google Scholar 

  27. T. Ericson and V. Strutinski, Nucl. Phys. 8, 284 (1958).

    Article  Google Scholar 

  28. V.M. Strutinskiĭ, Sov. Phys. JETP 10, 613 (1960).

    Google Scholar 

  29. S. G. Kadmensky and D. E. Lyubashevsky, Bull. Russ. Acad. Sci.: Phys. 76, 457 (2012).

    Article  Google Scholar 

  30. W. Hauser and H. Feshbach, Phys. Rev. 87, 366 (1952).

    Article  ADS  Google Scholar 

  31. P. A. Moldauer, Phys. Rev. 135, B642 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  32. E. S. Troubetzkoy, Phys. Rev. 122, 212 (1961).

    Article  ADS  MathSciNet  Google Scholar 

  33. V. E. Bunakov et al., Bull. Russ. Acad. Sci.: Phys. 70, 1853 (2006).

    Google Scholar 

  34. S. G. Kadmensky, L. V. Titova, and D. E. Lyubashevsky, Bull. Russ. Acad. Sci.: Phys. 81 (2017, in press).

    Google Scholar 

  35. A. V. Ignatyuk, N. S. Rabotnov, G. N. Smirenkin, et al., Sov. Phys. JETP 34, 684 (1971).

    ADS  Google Scholar 

  36. Yu. B. Ostapenko, G. N. Smirenkin, and A.S. Soldatov, Sov. J. Part. Nucl. 12, 545 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Kadmensky.

Additional information

Original Russian Text © S.G Kadmensky, V.E. Bunakov, D.E. Lyubashevsky, 2017, published in Yadernaya Fizika, 2017, Vol. 80, No. 5, pp. 447–454.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadmensky, S.G., Bunakov, V.E. & Lyubashevsky, D.E. Decisive role of wriggling vibrations in the formation of angular and spin distributions of products originating from binary and ternary fission of oriented nuclei. Phys. Atom. Nuclei 80, 850–857 (2017). https://doi.org/10.1134/S106377881705012X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377881705012X

Navigation