Skip to main content
Log in

Nature of Anomalous Particles (Granules) in Rapidly Quenched PREP Powders: IV. A Multiscale Study of the Structure Evolution of the PM HIP Stainless Steels under Heat Treatment and Hot Deformation

  • PERSPECTIVE STRUCTURAL MATERIALS
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The occurrence of anomalous particles (granules) with significantly different contents of interstitial microalloying elements, that is, carbon and boron, is an important feature of the homogeneity of the composition of rapidly quenched powders of stainless steels and high temperature Ni-based superalloys produced by the PREP method. A multi-scale experimental study of the evolution of the structure of PM HIP stainless steels under heat treatment and hot deformation has been carried out. Direct nuclear methods of activation autoradiography on carbon, track autoradiography on boron, metallography, SEM, EDX, and OIM have been used to reveal the evolution of the microstructure of PM HIP stainless steels. A significant effect of heat treatment and hot deformation on the behavior of carbon and boron in PM HIP stainless steels has been revealed. A significant effect of the microstructure evolution and the behavior of carbon and boron on the mechanical properties of PM HIP stainless steels in comparison with those of their traditional counterparts has been discovered and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.

REFERENCES

  1. A. A. Iljin, G. B. Stroganov, O. Kh. Fatkullin, A. V. Shulga, and V. N. Martinov, Structure and Properties of Rapidly Quenched Alloys (Altex, Moscow, 2008) [in Russian].

    Google Scholar 

  2. S. J. Zinkle and G. S. Was, Acta Mater. 61, 735 (2013). https://doi.org/10.1016/j.actamat.2012.11.004

    Article  ADS  Google Scholar 

  3. A. V. Shulga, J. Nucl. Mater. 434, 133 (2013). https://doi.org/10.1016/j.jnucmat.2012.11.008

    Article  ADS  Google Scholar 

  4. A. V. Shulga, in Proceedings of World Congress and Exibition PM 2016, October 9–13, 2016, Hamburg, Germany, HIP-Properties, p. 1.

  5. A. V. Shulga, J. Nucl. Mater. 373, 44 (2008). https://doi.org/10.1016/j.jnucmat.2007.04.050

    Article  ADS  Google Scholar 

  6. Y. Yano, T. Tanno, H. Oka, S. Ohtsuka, T. Inoue, S. Kato, T. Furukawa, T. Uwaba, T. Kaito, S. Ukai, N. Oono, A. Kimura, S. Hayashi, and T. Torimaru, J. Nucl. Mater. 487, 229 (2017). https://doi.org/10.1016/j.jnucmat.2017.02.021

    Article  ADS  Google Scholar 

  7. S. Irukuvarghula, H. Hassanin, and M. Preuss, Acta Mater. 172, 6 (2019). https://doi.org/10.1016/j.actamat.2018.10.018

    Article  ADS  Google Scholar 

  8. S. Irukuvarghula, H. Hassanin, C. Cayron, M. M. Attallah, D. Stewart, and M. Preuss, Acta Mater. 133, 269 (2017). https://doi.org/10.1016/j.actamat.2017.04.068

    Article  ADS  Google Scholar 

  9. A. V. Shulga, Phys. At. Nucl. 83, 1339 (2020). https://doi.org/10.1134/S1063778820090264 [A. V. Shulga, Yad. Fiz. Inzhin. 11 (1), 32 (2020). https://doi.org/10.1134/S2079562919050221].

    Article  Google Scholar 

  10. C. Doñate-Buendia, P. Kürnsteiner, F. Stern, M. B. Wilms, R. Streubel, I. M. Kusoglu, J. Tenkamp, E. Bruder, N. Pirch, S. Barcikowski, K. Durst, J. H. Schleifenbaum, F. Walther, B. Gault, and B. Gökce, Acta Mater. 206, 116566 (2021).

  11. A. V. Shulga, Eng. Failure Anal. 56, 512 (2015). https://doi.org/10.1016/j.engfailanal.2014.11.019

    Article  Google Scholar 

  12. J. H. Schneibel, M. Heilmaier, W. Blum, G. Hasemann, and T. Shanmugasundaram, Acta Mater. 59, 1300 (2011). https://doi.org/10.1016/j.actamat.2010.10.062

    Article  ADS  Google Scholar 

  13. G. Pimentel, C. Capdevila, M. J. Bartolomé, J. Chao, M. Serrano, A. García-Junceda, M. Campos, J. M. Torralba, and J. Aldazábal, Rev. Metal. 48, 303 (2012). https://doi.org/10.3989/revmetalm.1165

    Article  Google Scholar 

  14. A. V. Shulga, Phys. At. Nucl. 82, 1263 (2019). https://doi.org/10.1134/S1063778819090084 [A. V. Shulga, Yad. Fiz. Inzhin. 9 (4), 346 (2018). https://doi.org/10.1134/S2079562918040164].

    Article  Google Scholar 

  15. A. V. Shulga, Phys. At. Nucl. 84, 1801 (2021). https://doi.org/10.1134/S1063778821090325

    Article  Google Scholar 

  16. G. da Rosa, P. Maugis, A. Portavoce, J. Drillet, N. Valle, E. Lentzen, and K. Hoummada, Acta Mater. (2019). https://doi.org/10.1016/j.actamat.2019.10.029

  17. X. G. Wang, L. Wang, and M. X. Huang, Acta Mater. 124, 17 (2017). https://doi.org/10.1016/j.actamat.2016.10.069

    Article  ADS  Google Scholar 

  18. R. Schwa and V. Ruff, Acta Mater. 61, 1798 (2013). https://doi.org/10.1016/j.actamat.2012.12.00

    Article  ADS  Google Scholar 

  19. J. Mola, G. Luan, Q. Huang, Ch. Ullrich, O. Volkova, and Y. Estrin, Acta Mater. 212, 116888 (2021). https://doi.org/10.1016/j.actamat.2021.116888

  20. T. Li, S.-Ch. Chien, Zh. Ren, W. Windl, F. Ernst, and G. S. Frankel, Acta Mater. 221, 117433 (2021). https://doi.org/10.1016/j.actamat.2021.117433

  21. J. Takahashi, K. Ishikawa, K. Kawakami, M. Fujioka, and N. Kubota, Acta Mater. 133, 41 (2017). https://doi.org/10.1016/j.actamat.2017.05.02

    Article  ADS  Google Scholar 

  22. N. Cautaerts, R. Delville, E. Stergar, D. Schryvers, and M. Verwerft, Acta Mater. 164, 90 (2019). https://doi.org/10.1016/j.actamat.2018.10.018

    Article  ADS  Google Scholar 

  23. D. Caillard, Acta Mater. 112, 273 (2016). https://doi.org/10.1016/j.actamat.2016.04.018

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Shulga.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Petrov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shulga, A.V. Nature of Anomalous Particles (Granules) in Rapidly Quenched PREP Powders: IV. A Multiscale Study of the Structure Evolution of the PM HIP Stainless Steels under Heat Treatment and Hot Deformation. Phys. Atom. Nuclei 85, 2015–2031 (2022). https://doi.org/10.1134/S1063778822100581

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778822100581

Keywords:

Navigation