Skip to main content
Log in

Numerical Simulations of the Acceleration of Fast Protons and of the Excitation of Nuclear Reactions \({}^{\textrm{11}}\textrm{B}\boldsymbol{(p,3\alpha)}\) and \({}^{{11}}\textrm{B}\boldsymbol{(p,n)}^{{11}}\textrm{C}\) at the Intensities of Picosecond Laser Radiation in the Range of \(\boldsymbol{10^{18}{-}10^{19}}\) W/cm\({}^{{2}}\)

  • ELEMENTARY PARTICLES AND FIELDS
  • Experiment
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

Results of numerical simulations for acceleration of proton beams at the irradiation of Al target by a superintense laser pulse are presented. There is a good agreement with the experimental data in a broad range of laser intensities from \(I=10^{18}\) W/cm\({}^{2}\) to \(I=10^{19}\) W/cm\({}^{2}\) at the fixed laser pulse duration. The obtained parameters of proton beams were used for calculation of the total yield of \(\alpha\) particles and neutrons for the nuclear reactions \({}^{11}\)B(\(p,3\alpha\)) and \({}^{11}\)B(\(p,n\))\({}^{11}\)C at the collisions of proton beams with boron targets. It is shown that the number of \(\alpha\) particles escaping boron target and arriving at track detectors is less than 5\(\%\) of the total amount of \(\alpha\) particles, because the majority of these particles remain inside the target owing to ionization losses. The derived values of the yield of \(\alpha\) particles’ which arrive at detectors are in good agreement with the experimental data. We also calculate the total yield of neutrons in the reaction \({}^{11}\)B(\(p,n\))\({}^{11}\)C. It is found that, at the intensity \(I=10^{19}\) W/cm\({}^{2}\) of the picosecond laser pulse, the yield is equal to \(N_{n}=1.4\times 10^{8}\), this value is approximately of 3\(\%\) of the total yield of \(\alpha\) particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

REFERENCES

  1. Isotopes: Properties, Production, Application, Ed. by V. Yu. Baranov (Nauka, Moscow, 1999), Vol. 2 [in Russian].

    Google Scholar 

  2. A. B. Kukushkin and V. I. Kogan, Sov. J. Plasma Phys. 5, 708 (1979).

    ADS  Google Scholar 

  3. V. S. Belyaev, A. P. Matafonov, V. I. Vinogradov, V. P. Krainov, V. S. Lisitsa, A. S. Roussetski, G. N. Ignatyev, and V. P. Andrianov, Phys. Rev. E 72, 026406 (2005).

    Article  ADS  Google Scholar 

  4. C. Labaune, C. Baccou, S. Depierreux, C. Goyon, G. Loisel, V. Yahia, and J. Rafelski, Nat. Commun. 4, 2506 (2013).

    Article  ADS  Google Scholar 

  5. A. Picciotto, D. Margarone, A. Velyhan, P. Bellutti, J. Krasa, A. Szydlowsky, G. Bertuccio, Y. Shi, A. Mangione, J. Prokupek, A. Malinowska, E. Krousky, J. Ullschmied, L. Laska, M. Kucharik, and G. Korn, Phys. Rev. X 4, 031030 (2014).

    Google Scholar 

  6. L. Giuffrida, F. Belloni, D. Margarone, G. Petringa, G. Milluzzo, V. Scuderi, A. Velyhan, M. Rosinski, A. Picciotto, M. Kucharik, J. Dostal, R. Dudzak, J. Krasa, V. Istokskaia, R. Catalano, S. Tudisco, et al., Phys. Rev. E 101, 013204 (2020).

    Article  ADS  Google Scholar 

  7. D. Margarone, A. Morace, J. Bonvalet, Y. Abe, V. Kantarelou, D. Raffestin, L. Giuffrida, P. Nicolai, M. Tosca, A. Picciotto, G. Petringa, G. A. P. Cirrone, Y. Fukuda, Y. Kuramitsu, H. Habara, Y. Arikawa, et al., Front. Phys. 8, 343 (2020).

    Article  Google Scholar 

  8. C. Baccou, S. Depierreux, V. Yahia, C. Neuville, C. Goyon, R. De Angelis, F. Consoli, J. E. Ducret, G. Boutoux, J. Rafelski, and C. Labaune, Laser Part. Beams 33, 117 (2015).

    Article  ADS  Google Scholar 

  9. V. S. Belyaev, A. P. Matafonov, V. P. Krainov, A. Yu. Kedrov, B. V. Zagreev, A. S. Rusetskii, N. G. Borisenko, A. I. Gromov, A. V. Lobanov, and V. S. Lisitsa, Phys. At. Nucl. 83, 641 (2020).

    Article  Google Scholar 

  10. V. S. Belyaev, A. P. Matafonov, S. N. Andreev, V. P. Tarakanov, V. P. Krainov, V. S. Lisitsa, A. Yu. Kedrov, B. V. Zagreev, A. S. Rusetskii, N. G. Borisenko, A. I. Gromov, and A. V. Lobanov, Phys. At. Nucl. 85, 31 (2022).

    Article  Google Scholar 

  11. S. N. Andreev, V. S. Belyaev, A. P. Matafonov, V. P. Tarakanov, B. V. Zagreev, V. P. Krainov, S. A. Mukhanov, and A. V. Lobanov, J. Exp. Theor. Phys. 135, 26 (2022).

    Article  ADS  Google Scholar 

  12. V. P. Tarakanov, EPJ Web Conf. 149, 04024 (2017).

  13. Y. Murakami, Y. Kitagawa, Y. Sentoku, et al., Phys. Plasmas 8, 4138 (2001).

    Article  ADS  Google Scholar 

  14. T. E. Cowan, J. Fuchs, H. Ruhl, A. Kemp, P. Audebert, M. Roth, R. Stephens, I. Barton, A. Blazevic, E. Brambrink, J. Cobble, J. Fernández, J.-C. Gauthier, M. Geissel, M. Hegelich, J. Kaae, et al., Phys. Rev. Lett. 92, 204801 (2004).

    Article  ADS  Google Scholar 

  15. A. Macchi, M. Borghesi, and M. Passoni, Rev. Mod. Phys. 85, 751 (2013).

    Article  ADS  Google Scholar 

Download references

Funding

The work is carried out within the State assignment of the Moscow State Pedagogical University Physics of Nanostructural Materials: Fundamental Studies and Applications in Materials Science, Nanotechnologies, and Photonics under the support of the Ministry of Education of the Russian Federation, state registration no. AAAA-A20-120061890084-9. The work is also supported by the Ministry of Science and Higher Education of the Russian Federation, project no. FSMG-2021-0005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Krainov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Oborin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreev, S.N., Matafonov, A.P., Tarakanov, V.P. et al. Numerical Simulations of the Acceleration of Fast Protons and of the Excitation of Nuclear Reactions \({}^{\textrm{11}}\textrm{B}\boldsymbol{(p,3\alpha)}\) and \({}^{{11}}\textrm{B}\boldsymbol{(p,n)}^{{11}}\textrm{C}\) at the Intensities of Picosecond Laser Radiation in the Range of \(\boldsymbol{10^{18}{-}10^{19}}\) W/cm\({}^{{2}}\). Phys. Atom. Nuclei 86, 406–415 (2023). https://doi.org/10.1134/S1063778823040038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778823040038

Navigation